ﻻ يوجد ملخص باللغة العربية
Motivated by the study of conserved Aretakis charges for a scalar field on the horizon of an extremal black hole, we construct the metrics for certain classes of four-dimensional and five-dimensional extremal rotating black holes in Gaussian null coordinates. We obtain these as expansions in powers of the radial coordinate, up to sufficient order to be able to compute the Aretakis charges. The metrics we consider are for 4-charge black holes in four-dimensional STU supergravity (including the Kerr-Newman black hole in the equal-charge case) and the general 3-charge black holes in five-dimensional STU supergravity. We also investigate the circumstances under which the Aretakis charges of an extremal black hole can be mapped by conformal inversion of the metric into Newman-Penrose charges at null infinity. We show that while this works for four-dimensional static black holes, a simple radial inversion fails in rotating cases because a necessary conformal symmetry of the massless scalar equation breaks down. We also discuss that a massless scalar field in dimensions higher than four does not have any conserved Newman-Penrose charge, even in a static asymptotically flat spacetime.
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol
We construct exact solutions, which represent regular charged rotating Kaluza-Klein multi-black holes in the five-dimensional pure Einstein-Maxwell theory. Quantization conditions between the mass, the angular momentum, and charges appear from the re
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f
In the tunneling framework of Hawking radiation, charged massive particles tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentu