ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification, geometry and applications of supersymmetric backgrounds

170   0   0.0 ( 0 )
 نشر من قبل Ulf Gran
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the remarkable progress that has been made the last 15 years towards the classification of supersymmetric solutions with emphasis on the description of the bilinears and spinorial geometry methods. We describe in detail the geometry of backgrounds of key supergravity theories, which have applications in the context of black holes, string theory, M-theory and the AdS/CFT correspondence unveiling a plethora of existence and uniqueness theorems. Some other aspects of supersymmetric solutions like the Killing superalgebras and the homogeneity theorem are also presented, and the non-existence theorem for certain smooth supergravity flux compactifications is outlined. Amongst the applications described is the proof of the emergence of conformal symmetry near black hole horizons and the classification of warped AdS backgrounds that preserve more than 16 supersymmetries.



قيم البحث

اقرأ أيضاً

In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba ckground $mathsf{U}(1)$ superspace and are important in the context of supersymmetric field theory in curved space. We introduce (conformal) Killing tensor superfields $ell_{(alpha_1 dots alpha_m) ({dot alpha}_1 dots {dot alpha}_n)}$, with $m$ and $n$ non-negative integers, $m+n>0$, and elaborate on their significance in the following cases: (i) $m=n=1$; (ii) $m-1=n=0$; and (iii) $m=n>1$. The (conformal) Killing vector superfields $ell_{alpha dot alpha}$ generate the (conformal) isometries of curved superspace, which are symmetries of every (conformal) supersymmetric field theory. The (conformal) Killing spinor superfields $ell_{alpha }$ generate extended (conformal) supersymmetry transformations. The (conformal) Killing tensor superfields with $m=n>1$ prove to generate all higher symmetries of the (massless) massive Wess-Zumino operator.
144 - G. Papadopoulos 2020
We show that the Killing spinor equations of all supergravity theories which may include higher order corrections on a (r,s)-signature spacetime are associated with twisted covariant form hierarchies. These hierarchies are characterized by a connecti on on the space of forms which may not be degree preserving. As a consequence we demonstrate that the form Killing spinor bi-linears of all supersymmetric backgrounds satisfy a suitable generalization of conformal Killing-Yano equation with respect to this connection. To illustrate the general proof the twisted covariant form hierarchies of some supergravity theories in 4, 5, 6, 10 and 11 dimensions are also presented.
We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no $AdS_n$ backgrounds with $n ot=3$. Mo reover the warp factor of AdS$_3$ backgrounds is constant, the geometry is a product $AdS_3times M^7$ and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of $M^7$ has been specified in all cases. For 2 supersymmetries, it has been found that $M^7$ admits a suitably restricted $G_2$ structure. For 4 supersymmetries, $M^7$ has an $SU(3)$ structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, $M^7$ has an $SU(2)$ structure and can be described locally as a $S^3$ fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kahler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of $alpha$ corrections.
108 - D. M. Ghilencea 2019
Weyl conformal geometry may play a role in early cosmology where effective theory at short distances becomes conformal. Weyl conformal geometry also has a built-in geometric Stueckelberg mechanism: it is broken spontaneously to Riemannian geometry af ter a Weyl gauge transformation (of gauge fixing) while Stueckelberg mechanism re-arranges the degrees of freedom, conserving their number ($n_{df}$). The Weyl gauge field ($omega_mu$) of local scale transformations acquires a mass after absorbing a compensator (dilaton), decouples, and Weyl connection becomes Riemannian. Mass generation has thus a dynamic origin, as a transition from Weyl to Riemannian geometry. We show that a gauge fixing symmetry transformation of the original Weyl quadratic gravity action in its Weyl geometry formulation immediately gives the Einstein-Proca action for the Weyl gauge field and a positive cosmological constant, plus matter action (if present). As a result, the Planck scale is an {it emergent} scale, where Weyl gauge symmetry is spontaneously broken and Einstein action is the broken phase of Weyl action. This is in contrast to local scale invariant models (no gauging) where a negative kinetic term (ghost dilaton) remains present and $n_{df}$ is not conserved when this symmetry is broken. The mass of $omega_mu$, setting the non-metricity scale, can be much smaller than $M_text{Planck}$, for ultraweak values of the coupling ($q$). If matter is present, a positive contribution to the Planck scale from a scalar field ($phi_1$) vev induces a negative (mass)$^2$ term for $phi_1$ and spontaneous breaking of the symmetry under which it is charged. These results are immediate when using a Weyl geometry formulation of an action instead of its Riemannian picture. Briefly, Weyl gauge symmetry is physically relevant and its role in high scale physics should be reconsidered.
82 - Hai Lin , Gaurav Narain 2017
In this paper we look for AdS solutions to generalised gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of g ravity. The usual Einstein-Hilbert gravity is induced when the scalar acquires a non-zero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا