ﻻ يوجد ملخص باللغة العربية
The Hamiltonian Theory of the fractional quantum Hall (FQH) regime provides a simple and tractable approach to calculating gaps, polarizations, and many other physical quantities. In this paper we include disorder in our treatment, and show that a simple model with minimal assumptions produces results consistent with a range of experiments. In particular, the interplay between disorder and interactions can result in experimental signatures which mimic those of spin textures.
In this work we report the opening of an energy gap at the filling factor $ u=3+1/3$, firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifical
We study disorder operator, defined as a symmetry transformation applied to a finite region, across a continuous quantum phase transition in $(2+1)d$. We show analytically that at a conformally-invariant critical point with U(1) symmetry, the disorde
Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard Model, and its strong coupling Heisenberg limit, on a one-third depleted square lattice. This is the geometry occupied, after charge ordering, by t
We investigate the 2-dimensional Fermi surface of high-mobility LaAlO$_3$/SrTiO$_3$ interfaces using Shubnikov-de Haas oscillations. Our analysis of the oscillation pattern underscores the key role played by the Rashba spin-orbit interaction brought
Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symme