ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling of disorder operator at $(2+1)d$ U(1) quantum criticality

100   0   0.0 ( 0 )
 نشر من قبل Meng Cheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study disorder operator, defined as a symmetry transformation applied to a finite region, across a continuous quantum phase transition in $(2+1)d$. We show analytically that at a conformally-invariant critical point with U(1) symmetry, the disorder operator with a small U(1) rotation angle defined on a rectangle region exhibits power-law scaling with the perimeter of the rectangle. The exponent is proportional to the current central charge of the critical theory. Such a universal scaling behavior is due to the sharp corners of the region and we further obtain a general formula for the exponent when the corner is nearly smooth. To probe the full parameter regime, we carry out systematic computation of the U(1) disorder parameter in the square lattice Bose-Hubbard model across the superfluid-insulator transition with large-scale quantum Monte Carlo simulations, and confirm the presence of the universal corner correction. The exponent of the corner term determined from numerical simulations agrees well with the analytical predictions.



قيم البحث

اقرأ أيضاً

We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte C arlo simulations. We show that the disorder parameter for U(1) spin rotation symmetry exhibits perimeter scaling with a logarithmic correction associated with sharp corners of the region, as generally expected for a conformally-invariant critical point. However, for large rotation angle the universal coefficient of the logarithmic corner correction becomes negative, which is not allowed in any unitary conformal field theory. We also extract the current central charge from the small rotation angle scaling, whose value is much smaller than that of the free theory.
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show that at an conformally-invariant critical point of O(3) transition, the entanglement entropy exhibits universal scaling behavior of area law with logarithmic corner corrections and the obtained correction exponent represents the current central charge of the critical theory. Then we move on to the deconfined quantum critical point, where although we still observe similar scaling behavior but with a very different exponent. Namely, the corner correction exponent is found to be negative. Such a negative exponent is in sharp contrast with positivity condition of the Renyi entanglement entropy, which holds for unitary conformal field theories. Our results unambiguously reveal fundamental differences between DQC and QCPs described by unitary CFTs.
The electromagnetic response of topological insulators and superconductors is governed by a modified set of Maxwell equations that derive from a topological Chern-Simons (CS) term in the effective Lagrangian with coupling constant $kappa$. Here we co nsider a topological superconductor or, equivalently, an Abelian Higgs model in $2+1$ dimensions with a global $O(2N)$ symmetry in the presence of a CS term, but without a Maxwell term. At large $kappa$, the gauge field decouples from the complex scalar field, leading to a quantum critical behavior in the $O(2N)$ universality class. When the Higgs field is massive, the universality class is still governed by the $O(2N)$ fixed point. However, we show that the massless theory belongs to a completely different universality class, exhibiting an exotic critical behavior beyond the Landau-Ginzburg-Wilson paradigm. For finite $kappa$ above a certain critical value $kappa_c$, a quantum critical behavior with continuously varying critical exponents arises. However, as a function $kappa$ a transition takes place for $|kappa| < kappa_c$ where conformality is lost. Strongly modified scaling relations ensue. For instance, in the case where $kappa^2>kappa_c^2$, leading to the existence of a conformal fixed point, critical exponents are a function of $kappa$.
The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous p hase arising in the edge theory of a D-dimensional system under modular transformation, or modular anomaly, signals the presence of a (D+1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field theories along a (2+1)-D and a (3+1)-D edge. Using both analytical and numerical methods, we show that chiral complex free fermions in (2+1)-D and (3+1)-D are modular invariant. However, we show in (3+1)-D that when the edge theory is coupled to a background U(1) gauge field this results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a (4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with spacetime inversion symmetry(P*T) and fermion number parity symmetry for each spin becomes modular invariant when 8 copies of the edges exist.
222 - H. Chamati , N. S. Tonchev 2011
The quantum critical behavior of the 2+1 dimensional Gross--Neveu model in the vicinity of its zero temperature critical point is considered. The model is known to be renormalisable in the large $N$ limit, which offers the possibility to obtain expre ssions for various thermodynamic functions in closed form. We have used the concept of finite--size scaling to extract information about the leading temperature behavior of the free energy and the mass term, defined by the fermionic condensate and determined the crossover lines in the coupling ($g$) -- temperature ($T$) plane. These are given by $Tsim|g-g_c|$, where $g_c$ denotes the critical coupling at zero temperature. According to our analysis no spontaneous symmetry breaking survives at finite temperature. We have found that the leading temperature behavior of the fermionic condensate is proportional to the temperature with the critical amplitude $frac{sqrt{5}}3pi$. The scaling function of the singular part of the free energy is found to exhibit a maximum at $frac{ln2}{2pi}$ corresponding to one of the crossover lines. The critical amplitude of the singular part of the free energy is given by the universal number $frac13[frac1{2pi}zeta(3)-mathrm{Cl}_2(frac{pi}3)]=-0.274543...$, where $zeta(z)$ and $mathrm{Cl}_2(z)$ are the Riemann zeta and Clausens functions, respectively. Interpreted in terms the thermodynamic Casimir effect, this result implies an attractive Casimir force. This study is expected to be useful in shedding light on a broader class of four fermionic models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا