ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial-Spectral Vortex Solitons in Quadratic Lattices

212   0   0.0 ( 0 )
 نشر من قبل Zhiyong Xu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict the existence of spatial-spectral vortex solitons in one-dimensional periodic waveguide arrays with quadratic nonlinear response. In such vortices the energy flow forms a closed loop through the simultaneous effects of phase gradients at the fundamental frequency and second-harmonic fields, and the parametric frequency conversion between the spectral components. The linear stability analysis shows that such modes are stable in a broad parameter region.

قيم البحث

اقرأ أيضاً

We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatic ally enhance the field coupling leading to the stabilization of the vortex beam when the amplitude of the second beam exceeds some threshold value. We develop a variational approach to describe this effect analytically.
A plethora of applications have recently motivated extensive efforts on the generation of low noise Kerr solitons and coherent frequency combs in various platforms ranging from fiber to whispering gallery and integrated microscale resonators. However , the Kerr (cubic) nonlinearity is inherently weak, and in contrast, strong quadratic nonlinearity in optical resonators is expected to provide an alternative means for soliton formation with promising potential. Here, we demonstrate the formation of a dissipative quadratic soliton via non-stationary optical parametric amplification in the presence of significant temporal walk-off between pump and signal leading to half-harmonic generation accompanied by a substantial pulse compression (exceeding a factor of 40) at low pump pulse energies ($sim$ 4 picojoules). The bright quadratic soliton forms in a low-finesse cavity in both normal and anomalous dispersion regimes, which is in stark contrast with bright Kerr solitons. We present a route to significantly improve the performance of the demonstrated quadratic soliton when extended to an integrated nonlinear platform to realize highly-efficient extreme pulse compression leading to the formation of few-cycle soliton pulses starting from ultra-low energy picosecond scale pump pulses that are widely tunable from ultra-violet to mid-infrared spectral regimes.
Defects due to growth fluctuations in broad-area semiconductor lasers induce pinning and frequency shifts of spatial laser solitons. The effects of defects on the interaction of two solitons are considered in lasers with frequency-selective feedback both theoretically and experimentally. We demonstrate frequency and phase synchronization of paired laser solitons as their detuning is varied. In both theory and experiment the locking behavior is well described by the Adler model for the synchronization of coupled oscillators.
188 - Or Maor , Nir Dror , 2013
We introduce a one-dimensional model of a cavity with the Kerr nonlinearity and saturated gain, designed so as to keep solitons in the state of shuttle motion. The solitons are always unstable in the cavity bounded by the usual potential barriers, du e to accumulation of noise generated by the linear gain. Complete stabilization of the shuttling soliton is achieved if the linear barrier potentials are replaced by nonlinear ones, which trap the soliton, being transparent to the radiation. The removal of the noise from the cavity is additionally facilitated by an external ramp potential. The stable dynamical regimes are found numerically, and their basic properties are explained analytically.
90 - Jincheng Shi , Jianhua Zeng , 2018
The stabilization of one-dimensional solitons by a nonlinear lattice against the critical collapse in the focusing quintic medium is a challenging issue. We demonstrate that this purpose can be achieved by combining a nonlinearlatticeandsaturationoft hequinticnonlinearity. Thesystemsupportsthreespeciesofsolitons, namely, fundamental (even-parity) ones and dipole (odd-parity) modes of on- and off-site-centered types. Very narrow fundamental solitons are found in an approximate analytical form, and systematic results for very broad unstable and moderately broad partly stable solitons, including their existence and stability areas, are produced by means of numerical methods. Stability regions of the solitons are identified by means of systematic simulations. The stability of all the soliton species obeys the Vakhitov-Kolokolov criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا