ﻻ يوجد ملخص باللغة العربية
We present a microscopic calculation of the 6He beta-decay into the ground state of 6Li. To this end, we use chiral perturbation theory at next-to-next-to-next-to-leading order to describe the nuclear weak-currents. The nuclear wave functions are derived from the J-matrix inverse scattering nucleon-nucleon potential (JISP), and the Schroedinger equation is solved using the hyperspherical-harmonics expansion. Our calculation brings the theoretical decay-rate within 3% of the measured one. This success is attributed to the use of chiral-perturbation-theory based mesonic currents, whose contribution is qualitatively different compared to standard nuclear physics approach, where the use of meson exchange currents worsens the comparison to experiment. The inherent inconsistency in the use of the JISP potential together with chiral-perturbation-theory based is argued not to affect this conclusion, though a more detailed investigation is called for. We conclude that any suppression of the axial constant in nuclear matter is included in this description of the weak interaction in the nucleus.
Precision measurements of $beta$-decay observables offer the possibility to search for deviations from the Standard Model. A possible discovery of such deviations requires accompanying first-principles calculations. Here we compute the nuclear struct
Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar ter
The self-consistent proton-neutron quasiparticle random phase approximation approach is employed to calculate $beta$-decay half-lives of neutron-rich even-even nuclei with $8leqslant Z leqslant 30$. A newly proposed nonlinear point-coupling effective
Recent progress in nuclear-structure theory has been dramatic. I describe recent and future applications of ab initio calculations and the generator coordinate method to double-beta decay. I also briefly discuss the old and vexing problem of the reno
We demonstrate that abundant quantities of short-lived beta unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6He+ (807 ms half-life) ions were extracted fr