ﻻ يوجد ملخص باللغة العربية
Precision measurements of $beta$-decay observables offer the possibility to search for deviations from the Standard Model. A possible discovery of such deviations requires accompanying first-principles calculations. Here we compute the nuclear structure recoil corrections for the $beta$-decay of $^6$He which is of central interest in several experimental efforts. We use the emph{ab~initio} no-core shell model in the impulse approximation with potentials based on chiral effective field theory, augmented with an analysis of relevant uncertainties. We find that nuclear corrections create a significant deviation from the pure Gamow--Teller predictions -- within the sensitivity of future experiments -- making them essential in searches for physics beyond the Standard Model.
We present the first application of a new approach, proposed in [Journal of Physics G: Nuclear and Particle Physics, 43, 04LT01 (2016)] to derive coupling constants of the Skyrme energy density functional (EDF) from ab initio Hamiltonian. By perturbi
Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discov
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio app
Neutrinoless double beta decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limit
We discuss the construction of a nuclear Energy Density Functional (EDF) from ab initio calculations, and we advocate the need of a methodical approach that is free from ad hoc assumptions. The equations of state (EoS) of symmetric nuclear and pure n