ﻻ يوجد ملخص باللغة العربية
We demonstrate that abundant quantities of short-lived beta unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6He+ (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled and bunched by means of the buffer gas cooling technique. More than 10^8 ions have been stored over a measuring period of six days and about 10^5 decay coincidences between the beta particles and the 6Li^{++} recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments.
Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar ter
Several modes of electroweak radioactive decay require an interaction between the nucleus and bound electrons within the constituent atom. Thus, the probabilities of the respective decays are not only influenced by the structure of the initial and fi
Background: The Doppler broadening of $gamma$-ray peaks due to nuclear recoil from $beta$-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using $beta$-delayed proton emission or applied
We present a microscopic calculation of the 6He beta-decay into the ground state of 6Li. To this end, we use chiral perturbation theory at next-to-next-to-next-to-leading order to describe the nuclear weak-currents. The nuclear wave functions are der
The cyclotron frequency ratio of $^{187}mathrm{Os}^{29+}$ to $^{187}mathrm{Re}^{29+}$ ions was measured with the Penning-trap mass spectrometer PENTATRAP. The achieved result of $R=1.000:000:013:882(5)$ is to date the most precise such measurement pe