ﻻ يوجد ملخص باللغة العربية
Molecular static simulations have been performed to study the interaction between a single dislocation and a substitutional Al solute atom in a pure crystal of Ni. When the Al solute is situated at intermediate distance from the slip plane, we find that both edge and screw dislocations experiment a non-negligible binding energy. We show that for such length scale the description of the elasticity theory can be improved by taking into account the spreading of dislocation cores via the Peierls-Nabarro model.
Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In th
The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are
Carbon nanofibers (NFs) have been envisioned with broad promising applications, such as nanoscale actuators and energy storage medium. This work reports for the first-time super-elastic tensile characteristics of NFs constructed from a screw dislocat
This paper focuses on the connections between four stochastic and deterministic models for the motion of straight screw dislocations. Starting from a description of screw dislocation motion as interacting random walks on a lattice, we prove explicit
Interactions among dislocations and solute atoms are the basis of several important processes in metals plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known