ﻻ يوجد ملخص باللغة العربية
The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatation will lead to a wrong interaction.
Molecular static simulations have been performed to study the interaction between a single dislocation and a substitutional Al solute atom in a pure crystal of Ni. When the Al solute is situated at intermediate distance from the slip plane, we find t
Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomi
Moessbauer transmission spectra for the 14.41-keV resonant line in 57Fe have been collected at room temperature by using 57Co(Rh) commercial source and alpha-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in t
The propagation of dislocations in random crystals is evidenced to be governed by atomic-scale avalanches whose the extension in space and the time intermittency characterizingly diverge at the critical threshold. Our work is the very first atomic-sc
We employ the methods of atomistic simulation to investigate the climb of edge dislocation at nanovoids by analyzing the energetics of the underlying mechanism. A novel simulation strategy has been demonstrated to estimate the release of surface ener