ﻻ يوجد ملخص باللغة العربية
Aims. The small-scale nature of spacetime can be tested with observations of distant quasars. We comment on a recent paper by Tamburini et al. (A&A, 533, 71) which claims that Hubble Space Telescope observations of the most distant quasars place severe constraints on models of foamy spacetime. Methods. If space is foamy on the Planck scale, photons emitted from distant objects will accumulate uncertainties in distance and propagation directions thus affecting the expected angular size of a compact object as a function of redshift. We discuss the geometry of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We also address the mechanics of carrying out such a test. We draw upon our previously published work on this subject (Christiansen et al. 2011), which carried out similar tests as Tamburini et al. and also went considerably beyond their work in several respects. Results. When calculating the path taken by photons as they travel from a distant source to Earth, one must use the comoving distance rather than the luminosity distance. This then also becomes the appropriate distance to use when calculating the angular broadening expected in a distant source. The use of the wrong distance measure causes Tamburini et al. to overstate the constraints that can be placed on models of spacetime foam. In addition, we consider the impact of different ways of parametrizing and measuring the effects of spacetime foam. Given the variation of the shape of the point-spread function (PSF) on the chip, as well as observation-specific factors, it is important to select carefully -- and document -- the comparison stars used as well as the methods used to compute the Strehl ratio.
Recently, about five hundred fast radio bursts (FRBs) detected by CHIME/FRB Project have been reported. The vast amounts of data would make FRBs a promising low-redshift cosmological probe in the forthcoming years, and thus the issue of how many FRBs
Astronomical observations of distant quasars may be important to test models for quantum gravity, which posit Planck-scale spatial uncertainties (spacetime foam) that would produce phase fluctuations in the wavefront of radiation emitted by a source,
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this
Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range $0.036 leq z leq 5.1003$, part of which, $z sim 2.4 - 5.1$, is largely cosmologically unprobed. In this paper we use these QSO measurements,
Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modi