ﻻ يوجد ملخص باللغة العربية
We calculate exponential growth constants describing the asymptotic behavior of several quantities enumerating classes of orientations of arrow variables on the bonds of several types of directed lattice strip graphs $G$ of finite width and arbitrarily great length, in the infinite-length limit, denoted {G}. Specifically, we calculate the exponential growth constants for (i) acyclic orientations, $alpha({G})$, (ii) acyclic orientations with a single source vertex, $alpha_0({G})$, and (iii) totally cyclic orientations, $beta({G})$. We consider several lattices, including square (sq), triangular (tri), and honeycomb (hc). From our calculations, we infer lower and upper bounds on these exponential growth constants for the respective infinite lattices. To our knowledge, these are the best current bounds on these quantities. Since our lower and upper bounds are quite close to each other, we can infer very accurate approximate values for the exponential growth constants, with fractional uncertainties ranging from $O(10^{-4})$ to $O(10^{-2})$. Further, we present exact values of $alpha(tri)$, $alpha_0(tri)$, and $beta(hc)$ and use them to show that our lower and upper bounds on these quantities are very close to these exact values, even for modest strip widths. Results are also given for a nonplanar lattice denoted $sq_d$. We show that $alpha({G})$, $alpha_0({G})$, and $beta({G})$ are monotonically increasing functions of vertex degree for these lattices. We also study the asymptotic behavior of the ratios of the quantities (i)-(iii) divided by the total number of edge orientations as the number of vertices goes to infinity. A comparison is given of these exponential growth constants with the corresponding exponential growth constant $tau({G})$ for spanning trees. Our results are in agreement with inequalities following from the Merino-Welsh and Conde-Merino conjectures.
We study Kleinberg navigation (the search of a target in a d-dimensional lattice, where each site is connected to one other random site at distance r, with probability proportional to r^{-a}) by means of an exact master equation for the process. We s
The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this pape
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG
Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system sett
We study a model of self propelled particles exhibiting run and tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of