ﻻ يوجد ملخص باللغة العربية
Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this topological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field theory in situations where dynamical correlations become important.
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
The majority-vote (MV) model is one of the simplest nonequilibrium Ising-like model that exhibits a continuous order-disorder phase transition at a critical noise. In this paper, we present a quenched mean-field theory for the dynamics of the MV mode
Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolati
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in
Due to wide applications in diverse fields, random walks subject to stochastic resetting have attracted considerable attention in the last decade. In this paper, we study discrete-time random walks on complex network with multiple resetting nodes. Us