ﻻ يوجد ملخص باللغة العربية
Neutron scattering measurements of the magnetic excitations in single crystals of antiferromagnetic CaFe2As2 reveal steeply dispersive and well-defined spin waves up to an energy of 100 meV. Magnetic excitations above 100 meV and up to the maximum energy of 200 meV are however broader in energy and momentum than the experimental resolution. While the low energy modes can be fit to a Heisenberg model, the total spectrum cannot be described as arising from excitations of a local moment system. Ab-initio calculations of the dynamic magnetic susceptibility suggest that the high energy behavior is dominated by the damping of spin waves by particle-hole excitations.
Inelastic neutron scattering measurements of CaFe2As2 under applied hydrostatic pressure show that the antiferromagnetic spin fluctuations observed in the ambient pressure, paramagnetic, tetragonal (T) phase are strongly suppressed, if not absent, in
We measured dispersive spin excitations in $mathrm{SmFeAsO}$, parent compound of $mathrm{SmFeAsO_{text{1-x}}F_{text{x}}}$ one of the highest temperature superconductors of Fe pnictides (T$_{text{C}}approx$55~K). We determine the magnetic excitations
The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inela
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressu
Inelastic neutron scattering measurements on the low energy spin waves in CaFe2As2 show that the magnetic exchange interactions in the Fe layers are exceptionally large and similar to the cuprates. However, the exchange between layers is ~10% of the