ﻻ يوجد ملخص باللغة العربية
The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 meV, reminiscent of strongly-coupled, antiferromagnetically aligned spins on a square lattice, despite a lack of evidence for long range magnetic order. The significant damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, while the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.
The recent discovery of the superconductivity in the doped infinite layer nickelates $R$NiO$_2$ ($R$=La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca,Sr)CuO$_2$ having superconducting transition temperature ($T_{rm
We theoretically investigate the unconventional superconductivity in the newly discovered infinite-layer nickelates Nd$_{1-x}$Sr$_{x}$NiO$_{2}$ based on a two-band model. By analyzing the transport experiments, we propose that the doped holes dominan
The recent observation of superconductivity in infinite-layer Nd$_{1-x}$Sr$_x$NiO$_2$ thin films has attracted a lot of attention, since this compound is electronically and structurally analogous to the superconducting cuprates. Due to the challenges
We provide a set of computational experiments based on textit{ab initio} calculations to elucidate whether a cuprate-like antiferromagnetic insulating state can be present in the phase diagram of the infinite-layer nickelate family (RNiO$_2$, R= rare
Employing first-principles density functional theory calculations and Wannierization of the low energy band structure, we analyze the electronic structure of undoped, infinite-layer nickelate compounds, NdNiO$_2$, PrNiO$_2$ and LaNiO$_2$. Our study r