ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure

129   0   0.0 ( 0 )
 نشر من قبل S. L. Bud'ko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.



قيم البحث

اقرأ أيضاً

We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivi ty (rho) in the 1.8 - 300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 K and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T < 30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of about -1.04 K/kbar, while shifting the whole rho(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of about -0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P < 5 kbar. However, higher pressures bring about another phase transformation characterized by reduced resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.
Pb$_2$CoOsO$_6$ is a newly synthesized polar metal in which inversion symmetry is broken by the magnetic frustration in an antiferromagnetic ordering of Co and Os sublattices. The coupled magnetic and structural transition occurs at 45 K at ambient p ressure. Here we perform transport measurements and first-principles calculations to study the pressure effects on the magnetic/structural coupled transition of Pb$_2$CoOsO$_6$. Experimentally we monitor the resistivity anomaly at $T_N$ under various pressures up to 11 GPa in a cubic anvil cell apparatus. We find that $T_N$ determined from the resistivity anomaly first increases quickly with pressure in a large slope of $dT_N/dP$ = +6.8(8) K/GPa for $P < 4$ GPa, and then increases with a much reduced slope of 1.8(4) K/GPa above 4 GPa. Our first-principles calculations suggest that the observed discontinuity of $dT_N/dP$ around 4 GPa may be attributed to the vanishing of Os magnetic moment under pressure. Pressure substantially reduces the Os moment and completely suppresses it above a critical value, which relieves the magnetic frustration in the antiferromagnetic ordering of Pb$_2$CoOsO$_6$. The Co and Os polar distortions decrease with the increasing pressure and simultaneously vanish at the critical pressure. Therefore above the critical pressure a new centrosymmetric antiferromagnetic state emerges in Pb$_2$CoOsO$_6$, distinct from the one under ambient pressure, thus showing a discontinuity in $dT_N/dP$.
We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare earth transition metal arsenide oxide NdCoAsO compound that is isostructural to high temperature superconductor NdFeAsO. Four-probe electrical re sistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and anti-ferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained anti-ferromagnetic and non-superconducting to temperatures down to 10 K and to the highest pressure achieved in this experiment of 53 GPa. A P-T phase diagram for NdCoAsO is presented to a pressure of 53 GPa and low temperatures of 10 K.
Rattling-induced superconductivity in the {beta}-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperatur e Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural tran-sition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.
The recently discovered (Rb,Cs)EuFe4As4 compounds exhibit an unusual combination of superconductivity (Tc = 35 K) and ferromagnetism (Tm = 15 K). We have performed a series of x-ray diffraction, ac magnetic susceptibility, dc magnetization, and elect rical resistivity measurements on both RbEuFe4As4 and CsEuFe4As4 to pressures as high as 30 GPa. We find that the superconductivity onset is suppressed monotonically by pressure while the magnetic transition is enhanced at initial rates of dTm/dP = 1.7 K/GPa and 1.5 K/GPa for RbEuFe4As4 and CsEuFe4As4, respectively. Near 7 GPa, Tc onset and Tm become comparable. At higher pressures, signatures of bulk superconductivity gradually disappear. Room temperature x-ray diffraction measurements suggest the onset of a transition from tetragonal (T) to a half collapsed-tetragonal (hcT) phase at 10 GPa (RbEuFe4As4) and 12 GPa (CsEuFe4As4). The ability to tune Tc and Tm into coincidence with relatively modest pressures highlights (Rb,Cs)EuFe4As4 compounds as ideal systems to study the interplay of superconductivity and ferromagnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا