ترغب بنشر مسار تعليمي؟ اضغط هنا

The Density of Coronal Null Points from Hinode and MDI

41   0   0.0 ( 0 )
 نشر من قبل Dana Longcope
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic null points can be located numerically in a potential field extrapolation or their average density can be estimated from the Fourier spectrum of a magnetogram. We use both methods to compute the null point density from a quiet Sun magnetogram made with Hinodes NFI and from magnetograms from SOHOs MDI in both its high-resolution and low-resolution modes. All estimates of the super-chromospheric column density (z>1.5 Mm) agree with one another and with the previous measurements: 0.003 null points per square Mm of solar surface.

قيم البحث

اقرأ أيضاً

Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new met hod for quantifying such structure using density-sensitive EUV line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet Sun regions and interplume regions of coronal holes, we find a density contrast of at least a factor of three to ten and corresponding filling factors of about 10-20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.
A small blowout jet was observed at the boundary of the south polar coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising from one footpoint of a compact, bipolar bright point. Magnetograms from the Helioseismic Magnetic Imager (HMI) on board SDO showed that the jet was triggered by the cancelation of a parasitic positive polarity feature near the negative pole of the bright point. The jet emission was present for 25 mins and it extended 30 Mm from the bright point. Spectra from the EUV Imaging Spectrometer on board Hinode yielded a temperature and density of 1.6 MK and 0.9-1.7 x 10^8 cm^-3 for the ejected plasma. Line-of-sight velocities reached up to 250 km/s and were found to increase with height, suggesting plasma acceleration within the body of the jet. Evidence was found for twisting motions within the jet based on variations of the LOS velocities across the jet width. The derived angular speed was in the range 9-12 x 10^-3 rad s^-1, consistent with previous measurements from jets. The density of the bright point was 7.6 x 10^8 cm^-3, and the peak of the bright points emission measure occurred at 1.3 MK, with no plasma above 3 MK.
Coronal rain is the well-known phenomenon in which hot plasma high in the Suns corona undergoes rapid cooling (from > 10^6 K to < 10^4 K), condenses, and falls to the surface. Coronal rain appears frequently in active region coronal loops and is very common in post-flare loops. This Letter presents discovery observations, which show that coronal rain is ubiquitous in the embedded bipole very near a coronal hole boundary. Our observed structures formed when the photospheric decay of active region leading sunspots resulted in a large parasitic polarity embedded in a background unipolar region. We observe coronal rain to appear within the legs of closed loops well under the fan surface, as well as preferentially near separatrices of the resulting coronal topology: the spine lines, null point, and fan surface. We analyze 3 events using SDO Atmospheric Imaging Assembly (AIA) observations in the 304, 171, and 211 {/AA} channels, as well as SDO Helioseismic and Magnetic Imager (HMI) magnetograms. The frequency of rain formation and the ease with which it is observed strongly suggests that this phenomenon is generally present in null-point topologies of this size scale. We argue that these rain events could be explained by the classic process of thermal nonequilibrium or via interchange reconnection at the null; it is also possible that both mechanisms are present. Further studies with higher spatial resolution data and MHD simulations will be required to determine the exact mechanism(s).
This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail i n order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer.
In the present work we study Hinode/EIS observations of an active region taken before, during and after a small C2.0 flare in order to monitor the evolution of the magnetic field evolution and its relation to the flare event. We find that while the f lare left the active region itself unaltered, the event included a large Magnetic Field Enhancement (MFE), which consisted of a large increase of the magnetic field to strengths just short of 500~G in a rather small region where no magnetic field was measured before the flare. This MFE is observed during the impulsive phase of the flare at the footpoints of flare loops, its magnetic energy is sufficient to power the radiative losses of the entire flare, and has completely dissipated after the flare. We argue that the MFE might occur at the location of the reconnection event triggering the flare, and note that it formed within 22 minutes of the flare start (as given by the EIS raster return time). These results open the door to a new line of studies aimed at determining whether MFEs 1) can be flare precursor events, 2) can be used for Space Weather forecasts; and 3) what advance warning time they could allow; as well as to explore which physical processes lead to their formation and dissipation, whether such processes are the same in both long-duration and impulsive flares, and whether they can be predicted by theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا