ﻻ يوجد ملخص باللغة العربية
Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new method for quantifying such structure using density-sensitive EUV line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet Sun regions and interplume regions of coronal holes, we find a density contrast of at least a factor of three to ten and corresponding filling factors of about 10-20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.
EUV (Extreme-Ultraviolet) waves are globally propagating disturbances that have been observed since the era of the SoHO/EIT instrument. Although the kinematics of the wave front and secondary wave components have been widely studied, there is not muc
Multi-wavelength solar images in the EUV are routinely used for analysing solar features such as coronal holes, filaments, and flares. However, images taken in different bands often look remarkably similar as each band receives contributions coming f
We present a model for the intensity of optically thin EUV emission for a plasma atmosphere. We apply our model to the solar corona as observed using the six optically thin EUV channels of the SDO/AIA instrument. The emissivity of the plasma is calcu
Large-scale propagating fronts are frequently observed during solar eruptions, yet it is open whether they are waves or not, partly because the propagation is modulated by coronal structures, whose magnetic field we still cannot measure. However, whe
Total eclipses permit a deep analysis of both the inner and the outer parts of the corona using the continuum White-Light (W-L) radiations from electrons (K-corona), the superposed spectrum of forbidden emission lines from ions (E-corona) and the dus