صيغة السبينور النقية للسوبرسترين العشرية تؤدي إلى أمبيرات حلقة مبينة السوبرسيميترية، والتي تعبر عنها بشكل إحداثيات سوبرسيميترية في السبينور النقي. يستكشف هذا البحث طرقاً مختلفة لتقييم هذه الإحداثيات ويستخدمها ثم لحساب العوامل الكينماتية لأمبيرات الأربعة نقاط الطاقة الصفرية في الحلقة الواحدة والحلقتين تتضمن راموندين وأربعة حالات.
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.
We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the
The pure spinor formulation of superstring theory includes an interacting sector of central charge $c_{lambda}=22$, which can be realized as a curved $betagamma$ system on the cone over the orthogonal Grassmannian $text{OG}^{+}(5,10)$. We find that t
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d=10 Yang-Mills amplitudes and the NS-NS sector of tree-level d=10 s
The full two-loop amplitudes for five massless states in Type~II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian diff
In this paper we describe how representation theory of groups can be used to shorten the derivation of two loop partition functions in string theory, giving an intrinsic description of modular forms appearing in the results of DHoker and Phong [1]. O