ﻻ يوجد ملخص باللغة العربية
We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the massless four-point amplitude. It encodes bosonic and fermionic external states in supersymmetric form and reduces to existing bosonic amplitudes when expanded in components, therefore proving their equivalence. We also show how to compute the kinematic structures involving fermionic states.
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them
In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generali
The full two-loop amplitudes for five massless states in Type~II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian diff
The pure spinor formulation of superstring theory includes an interacting sector of central charge $c_{lambda}=22$, which can be realized as a curved $betagamma$ system on the cone over the orthogonal Grassmannian $text{OG}^{+}(5,10)$. We find that t
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d=10 Yang-Mills amplitudes and the NS-NS sector of tree-level d=10 s