ﻻ يوجد ملخص باللغة العربية
The full two-loop amplitudes for five massless states in Type~II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian differentials on the surface. The construction combines elements from the BRST cohomology of the pure spinor formulation and from chiral splitting with the help of loop momenta and homology invariance. The $alpha to 0$ limit of the resulting superstring amplitude is shown to be in perfect agreement with the previously known amplitude computed in Type~II supergravity. Investigations of the $alpha$ expansion of the Type~II amplitude and comparisons with predictions from S-duality are relegated to a first companion paper. A construction from first principles in the RNS formulation of the genus-two amplitude with five external NS states is relegated to a second companion paper.
The contribution from even spin structures to the genus-two amplitude for five massless external NS states in Type II and Heterotic superstrings is evaluated from first principles in the RNS formulation. Using chiral splitting with the help of loop m
In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the alpha expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to
In this paper we describe how representation theory of groups can be used to shorten the derivation of two loop partition functions in string theory, giving an intrinsic description of modular forms appearing in the results of DHoker and Phong [1]. O
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them
We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the