ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-free molecular alignment induced by elliptically polarized laser pulses: non invasive 3 dimensional characterization

225   0   0.0 ( 0 )
 نشر من قبل David Daems
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An investigation of field-free molecular alignment produced by elliptically polarized laser pulses is reported. Experiments are conducted in CO$_2$ at room temperature. A non invasive all-optical technique, based on the cross defocusing of a probe pulse, is used to measure the alignment along two orthogonal directions that is sufficient to provide a 3 dimensional characterization. The field-free molecular alignment produced by a laser of elliptical polarization is in good agreement in terms of amplitude and shape with theoretical predictions. It turns out to be almost equivalent to the superposition of the effects that one would obtain with two individual cross-polarized pulses. The investigation highlights notably the occurrence of field-free two-direction alignment alternation for a suitably chosen degree of ellipticity. The analogy between this specific ellipticity and the well known magic angle used in time resolved spectroscopy to prevent rotational contributions is discussed.



قيم البحث

اقرأ أيضاً

We consider deflection of polarizable molecules by inhomogeneous optical fields, and analyze the role of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces spectacular rainbow-like features in th e distribution of the scattering angle. Moreover, by preshaping molecular angular distribution with the help of short and strong femtosecond laser pulses, one may efficiently control the scattering process, manipulate the average deflection angle and its distribution, and reduce substantially the angular dispersion of the deflected molecules. We provide quantum and classical treatment of the deflection process. The effects of strong deflecting field on the scattering of rotating molecules are considered by the means of the adiabatic invariants formalism. This new control scheme opens new ways for many applications involving molecular focusing, guiding and trapping by optical and static fields.
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr ibutions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
We study the higher-harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time scale. The ellipticity or the polarization of the attosecond pulses can be tweaked by modifying the emitted harmonics ellipticity, which can be controlled by varying the driver fields. We propose a simple setup to control the polarization of the driving fields, which eventually changes the ellipticity of the attosecond pulses. A well-defined scaling law for the ellipticity of the attosecond pulse as a function of the rotation angle of the quarter-wave plate is also deduced by solving the time-dependent Schrodinger equation (TDSE) in two dimensions. The scaling law can further be explored to obtain the attosecond pulses of the desired degree of polarization, ranging from linear to elliptical to circular polarization.
We analyze the alignment of molecules generated by a pair of crossed ultra-short pump pulses of different polarizations by a technique based on the induced time-dependent gratings. Parallel polarizations yield an intensity grating, while perpendicula r polarizations induce a polarization grating. We show that both configurations can be interpreted at moderate intensity as an alignment induced by a single polarized pump pulse. The advantage of the perpendicular polarizations is to give a signal of alignment that is free from the plasma contribution. Experiments on femtosecond transient gratings with aligned molecules were performed in CO2 at room temperature in a static cell and at 30 K in a molecular expansion jet.
Increasing ellipticity usually suppresses the recollision probability drastically. In contrast, we report on a recollision channel with large return energy and a substantial probability, regardless of the ellipticity. The laser envelope plays a domin ant role in the energy gained by the electron, and in the conditions under which the electron comes back to the core. We show that this recollision channel eciently triggers multiple ionization with an elliptically polarized pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا