ﻻ يوجد ملخص باللغة العربية
Increasing ellipticity usually suppresses the recollision probability drastically. In contrast, we report on a recollision channel with large return energy and a substantial probability, regardless of the ellipticity. The laser envelope plays a dominant role in the energy gained by the electron, and in the conditions under which the electron comes back to the core. We show that this recollision channel eciently triggers multiple ionization with an elliptically polarized pulse.
We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence, especially around elliptic
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) whi
We introduce soft recollisions in laser-matter interaction. They are characterized by the electron missing the ion upon recollision in contrast to the well-known head-on collisions responsible for high-harmonic generation or above-threshold ionizatio
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr
We study the higher-harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time