ﻻ يوجد ملخص باللغة العربية
We analyze the alignment of molecules generated by a pair of crossed ultra-short pump pulses of different polarizations by a technique based on the induced time-dependent gratings. Parallel polarizations yield an intensity grating, while perpendicular polarizations induce a polarization grating. We show that both configurations can be interpreted at moderate intensity as an alignment induced by a single polarized pump pulse. The advantage of the perpendicular polarizations is to give a signal of alignment that is free from the plasma contribution. Experiments on femtosecond transient gratings with aligned molecules were performed in CO2 at room temperature in a static cell and at 30 K in a molecular expansion jet.
We consider deflection of polarizable molecules by inhomogeneous optical fields, and analyze the role of molecular orientation and rotation in the scattering process. It is shown that molecular rotation induces spectacular rainbow-like features in th
An investigation of field-free molecular alignment produced by elliptically polarized laser pulses is reported. Experiments are conducted in CO$_2$ at room temperature. A non invasive all-optical technique, based on the cross defocusing of a probe pu
We introduce a new optical tool - a two-dimensional optical centrifuge, capable of aligning molecules in extreme rotational states. Unlike the conventional centrifuge, which confines the molecules in the plane of their rotation, its two-dimensional v
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs
We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics mu