ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling effect in emissions of 103mRh excited by bremsstrahlung

60   0   0.0 ( 0 )
 نشر من قبل Yao Cheng
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear characteristic emissions of K alpha, K beta and gamma with a significant triplet splitting at room temperature are observed from the long-lived nuclear state of 103mRh excited by bremsstrahlung irradiation. A pronounced phase-transition-like narrowing of the emission profiles occurs immediately after the sample is cooled down to 77 K. The room temperature profiles reappear again abruptly and almost reversibly as the temperature drifts freely back to approximately the ice point after the filling of liquid nitrogen is stopped. These emission properties at 300 K and at low temperature may indicate that the 103mRh nuclei are in collective states.



قيم البحث

اقرأ أيضاً

Spectral deformation of K alpha, K beta and gamma emissions from the nuclear state 103mRh excited by bremsstrahlung are investigated. Nonlinear increase for excitation number density of 103mRh with radiation exposure is observed. The spectral profile s are broadened, attributable to a triplet splitting. Interesting time-evolution behaviors of the spectral deformations are obtained.
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dar k matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted i n the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario.
Inclusive and exclusive hard-photon (E$_gamma >$ 30 MeV) production in five different heavy-ion reactions ($^{36}$Ar+$^{197}$Au, $^{107}$Ag, $^{58}$Ni, $^{12}$C at 60{it A} MeV and $^{129}$Xe+$^{120}$Sn at 50{it A} MeV) has been studied coupling the TAPS photon spectrometer with several charged-particle multidetectors covering more than 80% of 4$pi$. The measured spectra, slope parameters and source velocities as well as their target-dependence, confirm the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon collisions that accounts for roughly 20% of the total hard-photon yield. The thermal slopes are a direct measure of the temperature of the excited nuclear systems produced during the reaction.
We review our recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions at temperature and densities relevant for core-collapse supernovae. We focus on neutron-neutron and neutron-alpha collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا