ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission of neutrino-antineutrino pairs by hadronic bremsstrahlung processes

69   0   0.0 ( 0 )
 نشر من قبل Sonia Bacca
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review our recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions at temperature and densities relevant for core-collapse supernovae. We focus on neutron-neutron and neutron-alpha collisions.


قيم البحث

اقرأ أيضاً

We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in $( u_mu,mu^-)$ scattering from $^{12}$C in the 2p-2h channel. We compute the response functions and cross sections wit h the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission ({it i.e.,} np in the initial state) is much larger than for neutron-proton emission ({it i.e.,} two neutrons in the initial state) by a $(omega,q)$-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the $Delta$ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.
We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T leq 2 0 MeV$), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the non-degenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by $nn$ and $pp$ bremsstrahlung by a factor of about two in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars and other astrophysical situations.
Bremsstrahlung emission of photons during nuclear reactions inside dense stellar medium is investigated in the paper. For that, a new model of nucleus is developed, where nuclear forces combine nucleons as bound system in dependence on deep location inside compact star. A polytropic model of stars at index $n=3$ with densities characterized from white dwarf to neutron star is used. Bremsstrahlung formalism and calculations are well tested on existed experimental information for scattering of protons of light nuclei in Earth. We find the following. (1) In neutron stars a phenomenon of dissociation of nucleus is observed --- its disintegration on individual nucleons, starting from some critical distance between this nucleus and center of star with high density. We do not observe such a phenomenon in white dwarfs. (2) In the white dwarfs, influence of stellar medium imperceptibly affects on bremsstrahlung photons. Also, we have accurate description of bremsstrahlung photons in nuclear reactions in Sun. (3) For neutron stars, influence of stellar medium is essentially more intensive and it crucially changes the bremsstrahlung spectrum. The most intensive emission is from bowel of the star, while the weakest emission is from periphery.
Neutrino propagation in protoneutron stars requires the knowledge of the composition as well as the dynamical response function of dense hadronic matter. Matter at very high densities is probably composed of other particles than nucleons and little i s known on the Fermi liquid properties of hadronic multicomponent systems. We will discuss the effects that the presence of $Lambda$ hyperons might have on the response and, in particular, on its influence on the thermodynamical stability of the system and the mean free path of neutrinos in dense matter.
We investigate emission of bremsstrahlung photons during scattering of $alpha$-particles off nuclei. For that, we construct bremsstrahlung model for $alpha$-nucleus scattering, where a new formalism for coherent and incoherent bremsstrahlung emission s in elastic scattering and mechanisms in inelastic scattering is added. Basing of this approach, we analyze experimental bremsstrahlung cross-sections in the scattering of $alpha$-particles off the isotope[59]{Co}, isotope[116]{Sn}, isotope[rm nat]{Ag} and isotope[197]{Au} nuclei at 50 MeV of $alpha$-particles beam measured at the Variable Energy Cyclotron Centre, Calcutta. We observe oscillations in the calculated spectra for elastic scattering for each nucleus. But, for isotope[59]{Co}, isotope[116]{Sn} and isotope[rm nat]{Ag} we obtain good agreement between calculated coherent spectrum with incoherent contribution for elastic scattering with experimental data in the full photon energy region. For heavy nucleus isotope[197]{Au} we find that (1) Oscillating behavior of the calculated spectrum of coherent emission in elastic scattering is in disagreement with experimental data, (2) Inclusion of incoherent emission improves description of the data, but summarized spectrum is in satisfactory agreement with the experimental data. To understand unknown modification of wave function for scattering, we add new mechanisms of inelastic scattering to calculations and extract information about unknown new amplitude of such mechanisms from experimental data analysis. This amplitude has maxima at some energies, that characterizes existence of states of the most compact structures (clusters) in nucleus-target. We explain origin of oscillations in the bremsstrahlung spectra for elastic scattering (at first time). New information about coherent and incoherent contributions is extracted for studied reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا