ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T

131   0   0.0 ( 0 )
 نشر من قبل Qing Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.

قيم البحث

اقرأ أيضاً

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of $(22 pm 3) $ tonne-days. Above $sim!0.4,mathrm{keV}_mathrm{ee}$, we observe $<1 , text{event}/(text{tonne} times text{day} times text{keV}_text{ee})$, which is more than one thousand times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses $m_chi$ within $3-6,mathrm{GeV}/mathrm{c}^2$, DM-electron scattering for $m_chi > 30,mathrm{MeV}/mathrm{c}^2$, and absorption of dark photons and axion-like particles for $m_chi$ within $0.186 - 1 , mathrm{keV}/mathrm{c}^2$.
86 - N. Du , N. Force , R. Khatiwada 2018
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sens itivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signatu re of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 times 10^{-39}$ cm${}^2$ for 130 GeV/c${}^2$ WIMPs at 90% confidence level.
82 - C. Boutan 2019
The $mu$eV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX Sidecar, which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM$_{010}$ and TM$_{020}$ modes.
We present limits on spin-independent dark matter-nucleon interactions using a $10.6$ $mathrm{g}$ Si athermal phonon detector with a baseline energy resolution of $sigma_E=3.86 pm 0.04$ $(mathrm{stat.})^{+0.19}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$ . This exclusion analysis sets the most stringent dark matter-nucleon scattering cross-section limits achieved by a cryogenic detector for dark matter particle masses from $93$ to $140$ $mathrm{MeV}/c^2$, with a raw exposure of $9.9$ $mathrm{g}cdotmathrm{d}$ acquired at an above-ground facility. This work illustrates the scientific potential of detectors with athermal phonon sensors with eV-scale energy resolution for future dark matter searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا