ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of Optimal Topography by Variational Data Assimilation

145   0   0.0 ( 0 )
 نشر من قبل Eugene Kazantsev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eugene Kazantsev




اسأل ChatGPT حول البحث

The use of data assimilation technique to identify optimal topography is discussed in frames of time-dependent motion governed by non-linear barotropic ocean model. Assimilation of artificially generated data allows to measure the influence of various error sources and to classify the impact of noise that is present in observational data and model parameters. The choice of assimilation window is discussed. Assimilating noisy data with longer windows provides higher accuracy of identified topography. The topography identified once by data assimilation can be successfully used for other model runs that start from other initial conditions and are situated in other parts of the models attractor.



قيم البحث

اقرأ أيضاً

A formulation is developed to assimilate ocean-wave data into the Numerical Flow Analysis (NFA) code. NFA is a Cartesian-based implicit Large-Eddy Simulation (LES) code with Volume of Fluid (VOF) interface capturing. The sequential assimilation of da ta into NFA permits detailed analysis of ocean-wave physics with higher bandwidths than is possible using either other formulations, such as High-Order Spectral (HOS) methods, or field measurements. A framework is provided for assimilating the wavy and vortical portions of the flow. Nudging is used to assimilate wave data at low wavenumbers, and the wave data at high wavenumbers form naturally through nonlinear interactions, wave breaking, and wind forcing. Similarly, the vertical profiles of the mean vortical flow in the wind and the wind drift are nudged, and the turbulent fluctuations are allowed to form naturally. As a demonstration, the results of a HOS of a JONSWAP wave spectrum are assimilated to study short-crested seas in equilibrium with the wind. Log profiles are assimilated for the mean wind and the mean wind drift. The results of the data assimilations are (1) Windrows form under the action of breaking waves and the formation of swirling jets; (2) The crosswind and cross drift meander; (3) Swirling jets are organized into Langmuir cells in the upper oceanic boundary layer; (4) Swirling jets are organized into wind streaks in the lower atmospheric boundary layer; (5) The length and time scales of the Langmuir cells and the wind streaks increase away from the free surface; (6) Wave growth is very dynamic especially for breaking waves; (7) The effects of the turbulent fluctuations in the upper ocean on wave growth need to be considered together with the turbulent fluctuations in the lower atmosphere; and (8) Extreme events are most likely when waves are not in equilibrium.
87 - Guangyao Wang , Yulin Pan 2020
Through ensemble-based data assimilation (DA), we address one of the most notorious difficulties in phase-resolved ocean wave forecast, regarding the deviation of numerical solution from the true surface elevation due to the chaotic nature of and und errepresented physics in the nonlinear wave models. In particular, we develop a coupled approach of the high-order spectral (HOS) method with the ensemble Kalman filter (EnKF), through which the measurement data can be incorporated into the simulation to improve the forecast performance. A unique feature in this coupling is the mismatch between the predictable zone and measurement region, which is accounted for through a special algorithm to modify the analysis equation in EnKF. We test the performance of the new EnKF-HOS method using both synthetic data and real radar measurements. For both cases (though differing in details), it is shown that the new method achieves much higher accuracy than the HOS-only method, and can retain the phase information of an irregular wave field for arbitrarily long forecast time with sequentially assimilated data.
Fuel moisture has a major influence on the behavior of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content observations from remote automated weather stations (RAW S) into a time-lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of fuel moisture content. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time-lag fuel moisture model in the coupled weather-fire code WRF-SFIRE on 10-hr fuel moisture content observations from Colorado RAWS in 2013. We show using leave-one-out testing that the TSM compares favorably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve fuel moisture content estimates in unobserved fuel classes.
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parame ters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection.
Variational data assimilation optimizes for an initial state of a dynamical system such that its evolution fits observational data. The physical model can subsequently be evolved into the future to make predictions. This principle is a cornerstone of large scale forecasting applications such as numerical weather prediction. As such, it is implemented in current operational systems of weather forecasting agencies across the globe. However, finding a good initial state poses a difficult optimization problem in part due to the non-invertible relationship between physical states and their corresponding observations. We learn a mapping from observational data to physical states and show how it can be used to improve optimizability. We employ this mapping in two ways: to better initialize the non-convex optimization problem, and to reformulate the objective function in better behaved physics space instead of observation space. Our experimental results for the Lorenz96 model and a two-dimensional turbulent fluid flow demonstrate that this procedure significantly improves forecast quality for chaotic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا