ﻻ يوجد ملخص باللغة العربية
Fuel moisture has a major influence on the behavior of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content observations from remote automated weather stations (RAWS) into a time-lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of fuel moisture content. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time-lag fuel moisture model in the coupled weather-fire code WRF-SFIRE on 10-hr fuel moisture content observations from Colorado RAWS in 2013. We show using leave-one-out testing that the TSM compares favorably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve fuel moisture content estimates in unobserved fuel classes.
Microwave remote sensors mounted on center pivot irrigation systems provide a feasible approach to obtain soil moisture information, in the form of water content maps, for the implementation of closed-loop irrigation. Major challenges such as signifi
The use of data assimilation technique to identify optimal topography is discussed in frames of time-dependent motion governed by non-linear barotropic ocean model. Assimilation of artificially generated data allows to measure the influence of variou
The interaction between the Earths surface and the atmosphere plays a key role in the initiation of cumulus convection. Over the land surface, a necessary boundary condition to consider for resolving land-atmosphere interactions is soil moisture. The
Solar activity, ranging from the background solar wind to energetic coronal mass ejections (CMEs), is the main driver of the conditions in the interplanetary space and in the terrestrial space environment, known as space weather. A better understandi
A formulation is developed to assimilate ocean-wave data into the Numerical Flow Analysis (NFA) code. NFA is a Cartesian-based implicit Large-Eddy Simulation (LES) code with Volume of Fluid (VOF) interface capturing. The sequential assimilation of da