ترغب بنشر مسار تعليمي؟ اضغط هنا

The [O II] lambda 3727 Luminosity Function at z ~ 1

95   0   0.0 ( 0 )
 نشر من قبل Guangtun Zhu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the evolution of the [OII]lambda 3727 luminosity function at 0.75<z<1.45 using high-resolution spectroscopy of ~14,000 galaxies observed by the DEEP2 galaxy redshift survey. We find that brighter than L_{OII}=10^{42} erg s^(-1) the luminosity function is well-represented by a power law dN/dL ~ L^{alpha} with slope alpha ~ -3. The number density of [OII] emitting galaxies above this luminosity declines by a factor of >~2.5 between z ~ 1.35 and z ~ 0.84. In the limit of no number-density evolution, the characteristic [OII] luminosity, L^*_[OII], defined as the luminosity where the space density equals 10^{-3.5} dex^{-1} Mpc^{-3}, declines by a factor of ~1.8 over the same redshift interval. Assuming that L_[OII] is proportional to the star-formation rate (SFR), and negligible change in the typical dust attenuation in galaxies at fixed [OII] luminosity, the measured decline in L^*_[OII] implies a ~25% per Gyr decrease in the amount of star formation in galaxies during this epoch. Adopting a faint-end power-law slope of -1.3pm0.2, we derive the comoving SFR density in four redshift bins centered around z~1 by integrating the observed [OII] luminosity function using a local, empirical calibration between L_[OII] and SFR, which statistically accounts for variations in dust attenuation and metallicity among galaxies. We find that our estimate of the SFR density at z~1 is consistent with previous measurements based on a variety of independent SFR indicators.



قيم البحث

اقرأ أيضاً

130 - J. Gallego 2002
The measurement of the Star Formation Rate density of the Universe is of prime importance in understanding the formation and evolution of galaxies. The [OII]3727 emission line flux, easy to measure up to z~1.4 within deep redshift surveys in the opti cal and up to z~5.4 in the near infrared, offers a reliable means of characterizing the star formation properties of high-z objects. In order to provide the high-z studies with a local reference, we have measured total [OII]3727 fluxes for the well analyzed local sample of star-forming galaxies from the Universidad Complutense de Madrid Survey. This data is used to derive the [OII]3727 luminosity function for local star-forming galaxies. When compared with similar luminosity densities published for redshift up to z~1, the overall evolution already observed in the star formation activity of the Universe is confirmed.
We construct a flux-limited sample of 135 candidate z~1 Lya emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism data using a new data cube search method. These LAEs have luminosities comparable to those at high redshifts and lie within a 7 G yr gap present in existing LAE samples. We use archival and newly obtained optical spectra to verify the UV redshifts of these LAEs. We use the combination of the GALEX UV spectra, optical spectra, and X-ray imaging data to estimate the active galactic nucleus (AGN) fraction and its dependence on Lya luminosity. We remove the AGNs and compute the luminosity function (LF) from 60 z~1 LAE galaxies. We find that the best fit LF implies a luminosity density increase by a factor of ~1.5 from z~0.3 to z~1 and ~20 from z~1 to z~2. We find a z~1 volumetric Lya escape fraction of 0.7+/-0.4%.
We have carried out a wide-field imaging survey for [OII]3727 emitting galaxies at z~1.2 in the HST COSMOS 2 square degree field using the Suprime-Cam on the Subaru Telescope. The survey covers a sky area of 6700 arcmin^2 in the COSMOS field, and a r edshift range between 1.17 and 1.20 (Delta_z = 0.03), corresponding to a survey volume of 5.56*10^5 Mpc^3. We obtain a sample of 3176 [OII] emitting galaxies with observed emission-line equivalent widths greater than 26 AA. Since our survey tends to sample brighter [OII]3727 emitting galaxies, we also analyze a sample of fainter [OII]3727 emitting galaxies found in the Subaru Deep Field (SDF). We find an extinction-corrected [OII] luminosity density of 10^{40.35^+0.08_-0.06} ergs s^-1 Mpc-3, corresponding to star formation rate density of 0.32^+0.06_-0.04 M_sun yr-1 Mpc^-3 in the COSMOS field at z~1.2. This is the largest survey for [OII]3727 emitters beyond z=1 currently available.
217 - K.I. Caputi , G. Lagache , Lin Yan 2007
We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colo urs, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.
We present the luminosity function (LF) for ultraluminous Ly$alpha$ emitting galaxies (LAEs) at z = 6.6. We define ultraluminous LAEs (ULLAEs) as galaxies with logL(Ly$alpha$) > 43.5 erg s$^{-1}$. We select our main sample using the g, r, i, z, and N B921 observations of a wide-area (30 deg$^2$) Hyper Suprime-Cam survey of the North Ecliptic Pole (NEP) field. We select candidates with g, r, i > 26, NB921 $leq$ 23.5, and NB921 - z $leq$ 1.3. Using the DEIMOS spectrograph on Keck II, we confirm 9 of our 14 candidates as ULLAEs at z = 6.6 and the remaining 5 as an AGN at z = 6.6, two [OIII]$lambda$5007 emitting galaxies at z = 0.84 and z = 0.85, and two non-detections. This emphasizes the need for full spectroscopic follow-up to determine accurate LFs. In constructing the ULLAE LF at z = 6.6, we combine our 9 NEP ULLAEs with two previously discovered and confirmed ULLAEs in the COSMOS field: CR7 and COLA1. We apply rigorous corrections for incompleteness based on simulations. We compare our ULLAE LF at z = 6.6 with LFs at z = 5.7 and z = 6.6 from the literature. Our data reject some previous LF normalizations and power law indices, but they are broadly consistent with others. Indeed, a comparative analysis of the different literature LFs suggests that none is fully consistent with any of the others, making it critical to determine the evolution from z = 5.7 to z = 6.6 using LFs constructed in exactly the same way at both redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا