ﻻ يوجد ملخص باللغة العربية
We have carried out a wide-field imaging survey for [OII]3727 emitting galaxies at z~1.2 in the HST COSMOS 2 square degree field using the Suprime-Cam on the Subaru Telescope. The survey covers a sky area of 6700 arcmin^2 in the COSMOS field, and a redshift range between 1.17 and 1.20 (Delta_z = 0.03), corresponding to a survey volume of 5.56*10^5 Mpc^3. We obtain a sample of 3176 [OII] emitting galaxies with observed emission-line equivalent widths greater than 26 AA. Since our survey tends to sample brighter [OII]3727 emitting galaxies, we also analyze a sample of fainter [OII]3727 emitting galaxies found in the Subaru Deep Field (SDF). We find an extinction-corrected [OII] luminosity density of 10^{40.35^+0.08_-0.06} ergs s^-1 Mpc-3, corresponding to star formation rate density of 0.32^+0.06_-0.04 M_sun yr-1 Mpc^-3 in the COSMOS field at z~1.2. This is the largest survey for [OII]3727 emitters beyond z=1 currently available.
To derive a new H$alpha$ luminosity function and to understand the clustering properties of star-forming galaxies at $z approx 0.24$, we have made a narrow-band imaging survey for H$alpha$ emitting galaxies in the HST COSMOS 2 square degree field. We
The measurement of the Star Formation Rate density of the Universe is of prime importance in understanding the formation and evolution of galaxies. The [OII]3727 emission line flux, easy to measure up to z~1.4 within deep redshift surveys in the opti
We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the Cosmic Evolution Survey
Abridged: Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple NB filters are used to distinguish Ha, [O II], and [O III]
We measure the evolution of the [OII]lambda 3727 luminosity function at 0.75<z<1.45 using high-resolution spectroscopy of ~14,000 galaxies observed by the DEEP2 galaxy redshift survey. We find that brighter than L_{OII}=10^{42} erg s^(-1) the luminos