ﻻ يوجد ملخص باللغة العربية
We construct a flux-limited sample of 135 candidate z~1 Lya emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism data using a new data cube search method. These LAEs have luminosities comparable to those at high redshifts and lie within a 7 Gyr gap present in existing LAE samples. We use archival and newly obtained optical spectra to verify the UV redshifts of these LAEs. We use the combination of the GALEX UV spectra, optical spectra, and X-ray imaging data to estimate the active galactic nucleus (AGN) fraction and its dependence on Lya luminosity. We remove the AGNs and compute the luminosity function (LF) from 60 z~1 LAE galaxies. We find that the best fit LF implies a luminosity density increase by a factor of ~1.5 from z~0.3 to z~1 and ~20 from z~1 to z~2. We find a z~1 volumetric Lya escape fraction of 0.7+/-0.4%.
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging sear
The Ly-alpha luminosity function (LF) of high-redshift Ly-alpha emitters (LAEs) is one of the few observables of the re-ionization epoch accessible to date with 8-10 m class telescopes. The evolution with redshift allows one to constrain the evolutio
New results are presented, as part of the Hi-z Emission Line Survey (HiZELS), from the largest area survey to date (1.4 sq.deg) for Lyman-alpha emitters (LAEs) at z~9. The survey, which is primarily targeting H-alpha emitters at z<3, uses the Wide Fi
Strong gravitational lensing magnifies the flux from distant galaxies, allowing us to detect emission lines that would otherwise fall below the detection threshold for medium-resolution spectroscopy. Here we present the detection of temperature-sensi
We report results of a deep wide-field narrowband survey for redshift z~5.7 Ly alpha emitters carried out with SuprimeCam on Subaru 8.3-m telescope. Deep narrowband imaging of the SSA22 field through a 120 A bandpass filter centered at 8150 A was com