ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate Sparse Decomposition Based on Smoothed L0-Norm

117   0   0.0 ( 0 )
 نشر من قبل Hamed Firouzi
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a method to address the problem of source estimation for Sparse Component Analysis (SCA) in the presence of additive noise. Our method is a generalization of a recently proposed method (SL0), which has the advantage of directly minimizing the L0-norm instead of L1-norm, while being very fast. SL0 is based on minimization of the smoothed L0-norm subject to As=x. In order to better estimate the source vector for noisy mixtures, we suggest then to remove the constraint As=x, by relaxing exact equality to an approximation (we call our method Smoothed L0-norm Denoising or SL0DN). The final result can then be obtained by minimization of a proper linear combination of the smoothed L0-norm and a cost function for the approximation. Experimental results emphasize on the significant enhancement of the modified method in noisy cases.



قيم البحث

اقرأ أيضاً

In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdet ermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Contrary to previous methods, which usually solve this problem by minimizing the L1 norm using Linear Programming (LP) techniques, our algorithm tries to directly minimize the L0 norm. It is experimentally shown that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.
Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the phot oacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition are needed. In this paper, we have combined the theory of compressed sensing (CS) with MB algorithms to reduce the number of transducer. Smoothed version of L0-norm (SL0) was proposed as the reconstruction method, and it was compared with simple iterative reconstruction (IR) and basis pursuit. The results show that S$ell_0$ provides a higher image quality in comparison with other methods while a low number of transducers were. Quantitative comparison demonstrates that, at the same condition, the SL0 leads to a peak-signal-to-noise ratio for about two times of the basis pursuit.
195 - Tamir Hazan , Amnon Shashua 2009
In this paper we treat both forms of probabilistic inference, estimating marginal probabilities of the joint distribution and finding the most probable assignment, through a unified message-passing algorithm architecture. We generalize the Belief Pro pagation (BP) algorithms of sum-product and max-product and tree-rewaighted (TRW) sum and max product algorithms (TRBP) and introduce a new set of convergent algorithms based on convex-free-energy and Linear-Programming (LP) relaxation as a zero-temprature of a convex-free-energy. The main idea of this work arises from taking a general perspective on the existing BP and TRBP algorithms while observing that they all are reductions from the basic optimization formula of $f + sum_i h_i$ where the function $f$ is an extended-valued, strictly convex but non-smooth and the functions $h_i$ are extended-valued functions (not necessarily convex). We use tools from convex duality to present the primal-dual ascent algorithm which is an extension of the Bregman successive projection scheme and is designed to handle optimization of the general type $f + sum_i h_i$. Mapping the fractional-free-energy variational principle to this framework introduces the norm-product message-passing. Special cases include sum-product and max-product (BP algorithms) and the TRBP algorithms. When the fractional-free-energy is set to be convex (convex-free-energy) the norm-product is globally convergent for estimating of marginal probabilities and for approximating the LP-relaxation. We also introduce another branch of the norm-product, the convex-max-product. The convex-max-product is convergent (unlike max-product) and aims at solving the LP-relaxation.
This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interf aces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.
Sparse representation has been widely used in data compression, signal and image denoising, dimensionality reduction and computer vision. While overcomplete dictionaries are required for sparse representation of multidimensional data, orthogonal base s represent one-dimensional data well. In this paper, we propose a data-driven sparse representation using orthonormal bases under the lossless compression constraint. We show that imposing such constraint under the Minimum Description Length (MDL) principle leads to a unique and optimal sparse representation for one-dimensional data, which results in discriminative features useful for data discovery.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا