ﻻ يوجد ملخص باللغة العربية
Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the photoacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition are needed. In this paper, we have combined the theory of compressed sensing (CS) with MB algorithms to reduce the number of transducer. Smoothed version of L0-norm (SL0) was proposed as the reconstruction method, and it was compared with simple iterative reconstruction (IR) and basis pursuit. The results show that S$ell_0$ provides a higher image quality in comparison with other methods while a low number of transducers were. Quantitative comparison demonstrates that, at the same condition, the SL0 leads to a peak-signal-to-noise ratio for about two times of the basis pursuit.
In this paper, we propose a method to address the problem of source estimation for Sparse Component Analysis (SCA) in the presence of additive noise. Our method is a generalization of a recently proposed method (SL0), which has the advantage of direc
In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdet
L0-regularization-based compressed sensing (L0-RBCS) is capable of outperforming L1-RBCS, but it is difficult to solve an optimization problem for L0-RBCS that cannot be formulated as a convex optimization. To achieve the optimization for L0-RBCS, we
In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compr
Many interesting problems in fields ranging from telecommunications to computational biology can be formalized in terms of large underdetermined systems of linear equations with additional constraints or regularizers. One of the most studied ones, th