ﻻ يوجد ملخص باللغة العربية
Flexible boundary condition methods couple an isolated defect to bulk through the bulk lattice Greens function. The inversion of the force-constant matrix for the lattice Greens function requires Fourier techniques to project out the singular subspace, corresponding to uniform displacements and forces for the infinite lattice. Three different techniques--relative displacement, elastic Greens function, and discontinuity correction--have different computational complexity for a specified numerical error. We calculate the convergence rates for elastically isotropic and anisotropic cases and compare them to analytic results. Our results confirm that the discontinuity correction is the most computationally efficient method to compute the lattice Greens function.
It is well known that the equation $x(t)=Ax(t)+f(t)$, where $A$ is a square matrix, has a unique bounded solution $x$ for any bounded continuous free term $f$, provided the coefficient $A$ has no eigenvalues on the imaginary axis. This solution can b
Phenomenological equations describing the Seebeck, Hall, Nernst, Peltier, Ettingshausen, and Righi-Leduc effects are numerically solved for the temperature, electric current, and electrochemical potential distributions of semiconductors under magnetic field. The results are compared to experiments.
The problem of the strain of smectics subjected to a force distributed over a line in the basal plane has been solved.
We present an ab initio theory of core- and valence resonant inelastic x-ray scattering (RIXS) based on a real-space multiple scattering Greens function formalism and a quasi-boson model Hamiltonian. Simplifying assumptions are made which lead to an
We study within the many-body Greens function $GW$ and Bethe-Salpeter formalisms the excitation energies of several coumarin dyes proposed as an efficient alternative to ruthenium complexes for dye-sensitized solar cells. Due to their internal donor-