ﻻ يوجد ملخص باللغة العربية
It is well known that the equation $x(t)=Ax(t)+f(t)$, where $A$ is a square matrix, has a unique bounded solution $x$ for any bounded continuous free term $f$, provided the coefficient $A$ has no eigenvalues on the imaginary axis. This solution can be represented in the form begin{equation*} x(t)=int_{-infty}^{infty}mathcal G(t-s)x(s),ds. end{equation*} The kernel $mathcal G$ is called Greens function. In the paper, a representation of Greens function in the form of the Newton interpolating polynomial is used for approximate calculation of $mathcal G$. An estimate of the sensitivity of the problem is given.
Flexible boundary condition methods couple an isolated defect to bulk through the bulk lattice Greens function. The inversion of the force-constant matrix for the lattice Greens function requires Fourier techniques to project out the singular subspac
In this paper we propose a method for computing the Faddeeva function $w(z) := e^{-z^2}mathrm{erfc}(-i z)$ via truncated modified trapezoidal rule approximations to integrals on the real line. Our starting point is the method due to Matta and Reichel
Finite-time coherent sets inhibit mixing over finite times. The most expensive part of the transfer operator approach to detecting coherent sets is the construction of the operator itself. We present a numerical method based on radial basis function
We develop a new type of orthogonal polynomial, the modified discrete Laguerre (MDL) polynomials, designed to accelerate the computation of bosonic Matsubara sums in statistical physics. The MDL polynomials lead to a rapidly convergent Gaussian quadr
This article studies the problem of approximating functions belonging to a Hilbert space $H_d$ with an isotropic or anisotropic Gaussian reproducing kernel, $$ K_d(bx,bt) = expleft(-sum_{ell=1}^dgamma_ell^2(x_ell-t_ell)^2right) mbox{for all} bx,b