ﻻ يوجد ملخص باللغة العربية
Phenomenological equations describing the Seebeck, Hall, Nernst, Peltier, Ettingshausen, and Righi-Leduc effects are numerically solved for the temperature, electric current, and electrochemical potential distributions of semiconductors under magnetic field. The results are compared to experiments.
A five-dimensional treatment of the Boltzmann equation is used to establish the constitutive equations that relate thermodynamic fluxes and forces up to first order in the gradients for simple charged fluids in the presence of electromagnetic fields.
Arising from the interplay between charge, spin and orbital of electrons, spin-orbit torque (SOT) has attracted immense interest in the past decade. Despite vast progress, the existing quantification methods of SOT still have their respective restric
Flexible boundary condition methods couple an isolated defect to bulk through the bulk lattice Greens function. The inversion of the force-constant matrix for the lattice Greens function requires Fourier techniques to project out the singular subspac
Thermoelectric effects are more sensitive and promising probes to topological properties of emergent materials, but much less addressed compared to other physical properties. Zirconium pentatelluride (ZrTe$_{5}$) has inspired active investigations re
Using first-principles calculations combined with Boltzmann transport theory, we investigate the effects of topological edge states on the thermoelectric properties of Bi nanoribbons. It is found that there is a competition between the edge and bulk