ترغب بنشر مسار تعليمي؟ اضغط هنا

On the renormalization of contact interactions for the configuration-interaction method in two dimensions

253   0   0.0 ( 0 )
 نشر من قبل Massimo Rontani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The configuration interaction (CI) method for calculating the exact eigenstates of a quantum-mechanical few-body system is problematic when applied to particles interacting through contact forces. In dimensions higher than one the approach fails due to the pathology of the Dirac delta-potential, making it impossible to reach convergence by gradually increasing the size of the Hilbert space. However, this problem may be cured in a rather simple manner by renormalizing the strength of the contact potential when diagonalizing in a truncated Hilbert space. One hereby relies on the comparison of the CI results to the two-body ground-state energy obtained by the exact solution of the Schroedinger equation for a regularized contact interaction. We here discuss a scheme that provides cutoff-independent few-body physical observables. The method is applied to a few-body system of ultracold atoms confined by a two-dimensional harmonic oscillator.

قيم البحث

اقرأ أيضاً

We present a configuration interaction method optimized for Fock-Darwin states of two-dimensional quantum dots with an axially symmetric, parabolic confinement potential subject to a perpendicular magnetic field. The optimization explicitly accounts for geometrical and dynamical symmetries of the Fock-Darwin single-particle states and for many-particle symmetries associated with the center-of-mass motion and with the total spin. This results in a basis set of reduced size and improved accuracy. The numerical results compare well with the quantum Monte Carlo and stochastic variational methods. The method is illustrated by the evolution of a strongly correlated few-electron droplet in a magnetic field in the regime of the fractional quantum Hall effect.
The interaction-induced orbital magnetic response of a nanoscale ring is evaluated for a diffusive system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fr{o}hlich interactions is crucial. The magnetic susceptibi lity which results from the fluctuations of the uniform superconducting order parameter is diamagnetic (paramagnetic) when the renormalized combined interaction is attractive (repulsive). Above the transition temperature of the bulk the total magnetic susceptibility has contributions from many wave-vector- and (Matsubara) frequency-dependent order parameter fluctuations. Each of these contributions results from a different renormalization of the relevant coupling energy, when one integrates out the fermionic degrees of freedom. The total diamagnetic response of the large superconductor may become paramagnetic when the systems size decreases.
Two-electron states bound to donors in silicon are important for both two qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multi-electron exchange and correlation effe cts taking into account the full bandstructure of silicon and the atomic scale granularity of a nanoscale device. Excited $s$-like states of $A_1$-symmetry are found to strongly influence the charging energy of a negative donor centre. We apply the technique on sub-surface dopants subjected to gate electric fields, and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low- energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous algebraic deformation of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to non-uniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.
We have developed a novel technique for detection of spin polarization with a quantum dot weakly coupled to the objective device. The disturbance to the object in this technique is very small since the detection is performed through sampling of singl e electrons in the object with very slow rate. We have applied the method to a quantum point contact (QPC) under a spin-orbit interaction. A high degree of spin polarization in the vicinity of the QPC was detected when the conductance stayed on a plateau at a half of the unit conductance quantum ($G_{rm q}/2equiv e^2/h$), and also on another plateau at $2e^2/h$. On the half-quantum plateau, the degree of polarization $P$ decreased with the bias source-drain voltage of the QPC while $P$ increased on the single-quantum plateau, manifesting that different mechanisms of polarization were working on these plateaus. Very long spin relaxation times in the detector quantum dot probably due to dynamical nuclear spin polarization were observed. Anomalous decrease of $P$ around zero-bias was observed at a Kondo-like resonance peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا