ﻻ يوجد ملخص باللغة العربية
While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous algebraic deformation of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to non-uniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.
One of the most prominent characteristics of two-dimensional Quantum Hall systems are chiral edge modes. Their existence is a consequence of the bulk-boundary correspondence and their stability guarantees the quantization of the transverse conductanc
Random matrix theory has proven very successful in the understanding of the spectra of chaotic systems. Depending on symmetry with respect to time reversal and the presence or absence of a spin 1/2 there are three ensembles, the Gaussian orthogonal (
The bulk band topology of symmetry invariant adiabatic systems in the thermodynamic limit are considered to be determined by the hopping energy. In this work, we present that in closed classical systems, due to generalized chiral symmetry broken, the
In this article we discuss generalized harmonic confinement of massless Dirac fermions in (2+1) dimensions using smooth finite magnetic fields. It is shown that these types of magnetic fields lead to conditional confinement, that is confinement is po
The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we