ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization of competing interactions and superconductivity on small scales

181   0   0.0 ( 0 )
 نشر من قبل Amnon Aharony
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction-induced orbital magnetic response of a nanoscale ring is evaluated for a diffusive system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fr{o}hlich interactions is crucial. The magnetic susceptibility which results from the fluctuations of the uniform superconducting order parameter is diamagnetic (paramagnetic) when the renormalized combined interaction is attractive (repulsive). Above the transition temperature of the bulk the total magnetic susceptibility has contributions from many wave-vector- and (Matsubara) frequency-dependent order parameter fluctuations. Each of these contributions results from a different renormalization of the relevant coupling energy, when one integrates out the fermionic degrees of freedom. The total diamagnetic response of the large superconductor may become paramagnetic when the systems size decreases.

قيم البحث

اقرأ أيضاً

Unconventional superconductors represent one of the most intriguing quantum states of matter. In particular, multiorbital systems have the potential to host exotic non-unitary superconducting states. While the microscopic origin of non-unitarity is n ot yet fully solved, competing interactions are suggested to play a crucial role in stabilizing such states. The interplay between charge order and superconductivity has been a recurring theme in unconventionally superconducting systems, ranging from cuprate-based superconductors to dichalcogenide systems and even to twisted van der Waals materials. Here, we demonstrate that the existence of competing interactions gives rise to a non-unitary superconducting state. We show that the non-unitarity stems from a competing charge-ordered state whose interplay with superconductivity promotes a non-trivial multiorbital order. We establish this mechanism both from a Ginzburg-Landau perspective, and also from a fully microscopic selfconsistent solution of a multiorbital Dirac material. Our results put forward competing interactions as a powerful mechanism for driving non-unitary multiorbital superconductivity.
The superconducting transition temperature (TC) in nanostructured Pb remains nearly constant as the particle size is reduced from 65 to 7nm, below which size the superconductivity is lost rather abruptly. In contrast, there is a large enhancement in the upper critical field (HC2) in the same size regime. We explore the origin of the unusual robustness of the TC over such a large particle size range in nanostructured Pb, by measuring the temperature dependence of the superconducting energy gap in planar tunnel junctions of Al/Al2O3/nano-Pb. We show that below 22nm, the electron phonon coupling strength increases monotonically with decreasing particle size, and almost exactly compensates for the quantum size effect, which is expected to suppress TC.
123 - K. Sasaki , J. Jiang , R. Saito 2006
We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable tra nsition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.
49 - Jochen Mannhart 2020
We present a novel device concept that utilizes the fascinating transition regime between quantum mechanics and classical physics. The devices operate by using a small number of individual quantum mechanical collapse events to interrupt the unitary e volution of quantum states represented by wave packets. Exceeding the constraints of the unitary evolution of quantum mechanics given by the Schroedinger equation and of classical Hamiltonian physics, these devices display a surprising behavior.
Josephson junctions and junction arrays are well studied devices in superconductivity. With external magnetic fields one can modulate the phase in a long junction and create traveling, solitonic waves of magnetic flux, called fluxons. Today, it is al so possible to device two different types of junctions: depending on the sign of the critical current density, they are called 0- or pi-junction. In turn, a 0-pi junction is formed by joining two of such junctions. As a result, one obtains a pinned Josephson vortex of fractional magnetic flux, at the 0-pi boundary. Here, we analyze this arrangement of superconducting junctions in the context of an atomic bosonic quantum gas, where two-state atoms in a double well trap are coupled in an analogous fashion. There, an all-optical 0-pi Josephson junction is created by the phase of a complex valued Rabi-frequency and we a derive a discrete four-mode model for this situation, which qualitatively resembles a semifluxon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا