ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Limits and Robustness of Nonlinear Intracavity Absorption Spectroscopy

56   0   0.0 ( 0 )
 نشر من قبل John Stockton
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the limits of intracavity absorption spectroscopy with nonlinear media. Using a common theoretical framework, we compare the detection of a trace gas within an undriven cavity with gain near and above threshold, a driven cavity with gain kept just below threshold, and a cavity driven close to the saturation point of a saturable absorber. These phase-transition-based metrology methods are typically quantum-limited by spontaneous emission, and we compare them to the empty cavity shotnoise-limited case. Although the fundamental limits achievable with nonlinear media do not surpass the empty cavity limits, we show that nonlinear methods are more robust against certain technical noise models. This recognition may have applications in spectrometer design for devices operating in non-ideal field environments.

قيم البحث

اقرأ أيضاً

We establish a novel approach to probing spatially resolved multi-time correlation functions of interacting many-body systems, with scalable experimental overhead. Specifically, designing nonlinear measurement protocols for multidimensional spectra i n a chain of trapped ions with single-site addressability enables us, e.g., to distinguish coherent from incoherent transport processes, to quantify potential anharmonicities, and to identify decoherence-free subspaces.
355 - Masaya Maeda , Akito Suzuki 2019
In this paper, we consider the continuous limit of a nonlinear quantum walk (NLQW) that incorporates a linear quantum walk as a special case. In particular, we rigorously prove that the walker (solution) of the NLQW on a lattice $delta mathbb Z$ unif ormly converges (in Sobolev space $H^s$) to the solution to a nonlinear Dirac equation (NLD) on a fixed time interval as $deltato 0$. Here, to compare the walker defined on $deltamathbb Z$ and the solution to the NLD defined on $mathbb R$, we use Shannon interpolation.
Waveguides in nonlinear materials are a key component for photon pair sources and offer promising solutions to interface quantum memories through frequency conversion. To bring these technologies closer to every-day life, it is still necessary to gua rantee a reliable and efficient fabrication of these devices. Therefore, a thorough understanding of the technological limitations of nonlinear waveguiding devices is paramount. In this paper, we study the link between fabrication errors of waveguides in nonlinear crystals and the final performance of such devices. In particular, we first derive a mathematical expression to qualitatively assess the technological limitations of any nonlinear waveguide. We apply this tool to study the impact of fabrication imperfections on the phasematching properties of different quantum processes realized in titanium-diffused lithium niobate waveguides. Finally, we analyse the effect of waveguide imperfections on quantum state generation and manipulation for few selected cases. We find that the main source of phasematching degradation is the correlated variation of the waveguides dispersion properties and suggest different possible strategies to reduce the impact of fabrication imperfections.
Quantum networks are a new paradigm of complex networks, allowing us to harness networked quantum technologies and to develop a quantum internet. But how robust is a quantum network when its links and nodes start failing? We show that quantum network s based on typical noisy quantum-repeater nodes are prone to discontinuous phase transitions with respect to the random loss of operating links and nodes, abruptly compromising the connectivity of the network, and thus significantly limiting the reach of its operation. Furthermore, we determine the critical quantum-repeater efficiency necessary to avoid this catastrophic loss of connectivity as a function of the network topology, the network size, and the distribution of entanglement in the network. In particular, our results indicate that a scale-free topology is a crucial design principle to establish a robust large-scale quantum internet.
65 - Ji Guan , Wang Fang , 2020
Several important models of machine learning algorithms have been successfully generalized to the quantum world, with potential speedup to training classical classifiers and applications to data analytics in quantum physics that can be implemented on the near future quantum computers. However, quantum noise is a major obstacle to the practical implementation of quantum machine learning. In this work, we define a formal framework for the robustness verification and analysis of quantum machine learning algorithms against noises. A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data. In particular, this algorithm can find adversarial examples during checking. Our approach is implemented on Googles TensorFlow Quantum and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises, derived from the surrounding environment. The effectiveness of our robust bound and algorithm is confirmed by the experimental results, including quantum bits classification as the Hello World example, quantum phase recognition and cluster excitation detection from real world intractable physical problems, and the classification of MNIST from the classical world.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا