ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabrication limits of waveguides in nonlinear crystals and their impact on quantum optics applications

130   0   0.0 ( 0 )
 نشر من قبل Matteo Santandrea
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Waveguides in nonlinear materials are a key component for photon pair sources and offer promising solutions to interface quantum memories through frequency conversion. To bring these technologies closer to every-day life, it is still necessary to guarantee a reliable and efficient fabrication of these devices. Therefore, a thorough understanding of the technological limitations of nonlinear waveguiding devices is paramount. In this paper, we study the link between fabrication errors of waveguides in nonlinear crystals and the final performance of such devices. In particular, we first derive a mathematical expression to qualitatively assess the technological limitations of any nonlinear waveguide. We apply this tool to study the impact of fabrication imperfections on the phasematching properties of different quantum processes realized in titanium-diffused lithium niobate waveguides. Finally, we analyse the effect of waveguide imperfections on quantum state generation and manipulation for few selected cases. We find that the main source of phasematching degradation is the correlated variation of the waveguides dispersion properties and suggest different possible strategies to reduce the impact of fabrication imperfections.

قيم البحث

اقرأ أيضاً

This is a pre-publication version of a forthcoming book on quantum atom optics. It is written as a senior undergraduate to junior graduate level textbook, assuming knowledge of basic quantum mechanics, and covers the basic principles of neutral atom matter wave systems with an emphasis on quantum technology applications. The topics covered include: introduction to second quantization of many-body systems, Bose-Einstein condensation, the order parameter and Gross-Pitaevskii equation, spin dynamics of atoms, spinor Bose-Einstein condensates, atom diffraction, atomic interferometry beyond the standard limit, quantum simulation, squeezing and entanglement with atomic ensembles, quantum information with atomic ensembles. This book would suit students who wish to obtain the necessary skills for working with neutral atom many-body atomic systems, or could be used as a text for an undergraduate or graduate level course (exercises are included throughout). This is a near-final draft of the book, but inevitably errors may be present. If any errors are found, we welcome you to contact us and it will be corrected before publication. (TB: tim.byrnes[at]nyu.edu, EI: ebube[at]nyu.edu)
High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabricatio n of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra- precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single- shot and small-angle stitched multi-shot interferometry. The measurements show root- mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of $lambda$=50 for visible optics.
We demonstrate a wide range of novel functions in integrated, CMOS compatible, devices. This platform has promise for telecommunications and on-chip WDM optical interconnects for computing.
139 - Z. Vernon , J.E. Sipe 2015
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed f or a cw pump input of arbitrary intensity. In the strongly driven regime self- and cross-phase modulation, as well as multi-pair generation, lead to a rich variety of power-dependent effects; the results are markedly different than in the low power limit. The photon pair generation rate, single photon spectrum, and joint spectral intensity (JSI) distribution are calculated. Splitting of the generated single photon spectrum into a doublet structure associated with both pump detuning and cross-phase modulation is predicted, as well as substantial narrowing of the generated signal and idler bandwidths associated with the onset of optical parametric oscillation at intermediate powers. Both the correlated and uncorrelated contributions to the JSI are calculated, and for sufficient powers the uncorrelated part of the JSI is found to form a quadruplet structure. The pump detuning is found to play a crucial role in all of these phenomena, and a critical detuning is identified which divides the system behaviour into distinct regimes, as well as an optimal detuning strategy which preserves many of the low-power characteristics of the generated photons for arbitrary input power.
Here, we explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions between individual photons with high fidelity. In particular, the spatial order ing of the atoms guarantees efficient atom-light interactions without the possibility of scattering light into unwanted directions, for example, allowing the array to act as a perfect mirror for individual photons. In turn, Rydberg interactions enable single photons to alter the optical response of the array within a potentially large blockade radius $R_b$, which can effectively punch a large hole for subsequent photons. We show that such a system enables a coherent photon-photon gate or switch, with an error scaling $sim R_b^{-4}$ that is significantly better than the best known scaling in a disordered ensemble. We also investigate the optical properties of the system in the limit of strong input intensities. Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model based on holes punched in a classical mirror.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا