ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Spectroscopy of Sub-AU-Sized Regions of T Tauri and Herbig Ae/Be Disks

106   0   0.0 ( 0 )
 نشر من قبل Joshua Eisner
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spatially resolved near-IR spectroscopic observations of 15 young stars. Using a grism spectrometer behind the Keck Interferometer, we obtained an angular resolution of a few milli-arcseconds and a spectral resolution of 230, enabling probes of both gas and dust in the inner disks surrounding the target stars. We find that the angular size of the near-IR emission typically increases with wavelength, indicating hot, presumably gaseous material within the dust sublimation radius. Our data also clearly indicate Brackett-gamma emission arising from hot hydrogen gas, and suggest the presence of water vapor and carbon monoxide gas in the inner disks of several objects. This gaseous emission is more compact than the dust continuum emission in all cases. We construct simple physical models of the inner disk and fit them to our data to constrain the spatial distribution and temperature of dust and gas emission components.



قيم البحث

اقرأ أيضاً

Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential und erlying causes we perform a comparative study of the chemistry of T Tauri and Herbig Ae/Be disks, using a model that pays special attention to photochemistry. The warmer disk temperatures and higher ultraviolet flux of Herbig stars compared to T Tauri stars induce some differences in the disk chemistry. In the hot inner regions, H2O, and simple organic molecules like C2H2, HCN, and CH4 are predicted to be very abundant in T Tauri disks and even more in Herbig Ae/Be disks, in contrast with infrared observations that find a much lower detection rate of water and simple organics toward disks around hotter stars. In the outer regions, the model indicates that the molecules typically observed in disks, like HCN, CN, C2H, H2CO, CS, SO, and HCO+, do not have drastic abundance differences between T Tauri and Herbig Ae disks. Some species produced under the action of photochemistry, like C2H and CN, are predicted to have slightly lower abundances around Herbig Ae stars due to a narrowing of the photochemically active layer. Observations indeed suggest that these radicals are somewhat less abundant in Herbig Ae disks, although in any case the inferred abundance differences are small, of a factor of a few at most. A clear chemical differentiation between both types of disks concerns ices, which are expected to be more abundant in Herbig Ae disks. The global chemical behavior of T Tauri and Herbig Ae/Be disks is quite similar. The main differences are driven by the warmer temperatures of the latter, which result in a larger reservoir or water and simple organics in the inner regions and a lower mass of ices in the outer disk.
120 - V.C. Geers 2007
Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. VLT-VISIR N-band spectra and VLT-ISAAC and VLT- NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 micron PAH features. Spatial-extent profiles of the features and the continuum emission are derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. The 3.3, 8.6, and 11.2 micron PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1E-15 and 5E-17 W/m^2. All 11.2 micron detections from a previous Spitzer survey are confirmed with (tentative) 3.3 micron detections, and both the 8.6 and the 11.2 micron features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34, consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 micron emission is confined to a small radial extent of 12 +- 3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 micron features are consistent with larger (>= 100 carbon atoms) PAHs.
We have conducted the first systematic study of Herbig Ae/Be stars using the technique of long baseline stellar interferometry in the near-infrared. The principal result of this paper is that the IOTA interferometer resolves the source of infrared ex cess in 11 of the 15 systems surveyed. The visibility data for all the sources has been interpreted within the context of four simple models which represent a range of plausible representations for the brightness distribution of the source of excess emission: a Gaussian, a narrow uniform ring, a flat blackbody disk with a single temperature power law, and an infrared companion. We find that the characteristic sizes of the near-infrared emitting regions are larger than previously thought (0.5-5.9 AU, as given by the FWHM of the Gaussian intensity). A further major result of this paper is that the sizes measured, when combined with the observed spectral energy distributions, essentially rule out accretion disk models represented by blackbody disks with the canonical radial temperature law with exponent -3/4. We also find that, within the range observed in this study, none of the sources (except the new binary) shows varying visibilities as the orientation of the interferometer baseline changes. Taken as an ensemble, with no clear evidence in favor of axi-symmetric structure, the observations favor the interpretation that the circumstellar dust is distributed in spherical envelopes (the Gaussian model) or thin shells (the ring model).
Herbig Ae/Be objects, like their lower mass counterparts T Tauri stars, are seen to form a stable circumstellar disk which is initially gas-rich and could ultimately form a planetary system. We present Herschel SPIRE 460-1540 GHz spectra of five targ ets out of a sample of 13 young disk sources, showing line detections mainly due to warm CO gas.
*Context The evolution of young massive protoplanetary disks toward planetary systems is expected to include the formation of gaps and the depletion of dust and gas. *Aims A special group of flaring disks around Herbig Ae/Be stars do not show promine nt silicate emission features. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. *Methods We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS and VLT/VISIR. Our radiative transfer modeling solutions require a separation of inner- and outer- disks by a large gap. From this we characterize the radial density structure of dust and PAHs in the disk. *Results The inner edge of the outer disk has a high surface brightness and a typical temperature between ~100-150 K and therefore dominates the emission in the Q-band. We derive radii of the inner edge of the outer disk of 34, 23, 30 and 63 AU for HD97048, HD169142, HD135344B and Oph IRS 48 respectively. For HD97048 this is the first detection of a disk gap. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to VSGs or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. *Conclusions. The absence of silicate emission features is due to the presence of large gaps in the critical temperature regime. Many, if not all Herbig disks with Spectral Energy Distribution (SED) classification `group I are disks with large gaps and can be characterized as (pre-) transitional. An evolutionary path from the observed group I to the observed group II sources seems no longer likely. Instead, both might derive from a common ancestor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا