ﻻ يوجد ملخص باللغة العربية
*Context The evolution of young massive protoplanetary disks toward planetary systems is expected to include the formation of gaps and the depletion of dust and gas. *Aims A special group of flaring disks around Herbig Ae/Be stars do not show prominent silicate emission features. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. *Methods We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS and VLT/VISIR. Our radiative transfer modeling solutions require a separation of inner- and outer- disks by a large gap. From this we characterize the radial density structure of dust and PAHs in the disk. *Results The inner edge of the outer disk has a high surface brightness and a typical temperature between ~100-150 K and therefore dominates the emission in the Q-band. We derive radii of the inner edge of the outer disk of 34, 23, 30 and 63 AU for HD97048, HD169142, HD135344B and Oph IRS 48 respectively. For HD97048 this is the first detection of a disk gap. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to VSGs or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. *Conclusions. The absence of silicate emission features is due to the presence of large gaps in the critical temperature regime. Many, if not all Herbig disks with Spectral Energy Distribution (SED) classification `group I are disks with large gaps and can be characterized as (pre-) transitional. An evolutionary path from the observed group I to the observed group II sources seems no longer likely. Instead, both might derive from a common ancestor.
We present spatially resolved near-IR spectroscopic observations of 15 young stars. Using a grism spectrometer behind the Keck Interferometer, we obtained an angular resolution of a few milli-arcseconds and a spectral resolution of 230, enabling prob
We report the results of a sensitive K-band survey of Herbig Ae/Be disk sizes using the 85-m baseline Keck Interferometer. Targets were chosen to span the maximum range of stellar properties to probe the disk size dependence on luminosity and effecti
We have conducted the first systematic study of Herbig Ae/Be stars using the technique of long baseline stellar interferometry in the near-infrared. The principal result of this paper is that the IOTA interferometer resolves the source of infrared ex
We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 mu m using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of equal numbers of objects belonging to the two categories defined by Meeus et al. (2001); 11 group I (flaring disk) and
The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scal