ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Circumstellar Structure of Herbig Ae/Be Stars in the Near-Infrared

79   0   0.0 ( 0 )
 نشر من قبل Rafael Millan-Gabet
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have conducted the first systematic study of Herbig Ae/Be stars using the technique of long baseline stellar interferometry in the near-infrared. The principal result of this paper is that the IOTA interferometer resolves the source of infrared excess in 11 of the 15 systems surveyed. The visibility data for all the sources has been interpreted within the context of four simple models which represent a range of plausible representations for the brightness distribution of the source of excess emission: a Gaussian, a narrow uniform ring, a flat blackbody disk with a single temperature power law, and an infrared companion. We find that the characteristic sizes of the near-infrared emitting regions are larger than previously thought (0.5-5.9 AU, as given by the FWHM of the Gaussian intensity). A further major result of this paper is that the sizes measured, when combined with the observed spectral energy distributions, essentially rule out accretion disk models represented by blackbody disks with the canonical radial temperature law with exponent -3/4. We also find that, within the range observed in this study, none of the sources (except the new binary) shows varying visibilities as the orientation of the interferometer baseline changes. Taken as an ensemble, with no clear evidence in favor of axi-symmetric structure, the observations favor the interpretation that the circumstellar dust is distributed in spherical envelopes (the Gaussian model) or thin shells (the ring model).



قيم البحث

اقرأ أيضاً

235 - Ryan L. Doering 2009
We report near-infrared photometric measurements of 35 Herbig Ae/Be candidate stars obtained with direct imaging and aperture photometry. Observations were made through the broadband J, H, and K filters, with each source imaged in at least one of the wavebands. We achieved subarcsecond angular resolution for all observations, providing us with the opportunity to search for close binary candidates and extended structure. The imaging revealed five newly identified binary candidates and one previously resolved T Tauri binary among the target sources with separations of <~2.5. Separate photometry is provided for each of the binary candidate stars. We detect one extended source that has been identified as a protoplanetary nebula. Comparing our magnitudes to past measurements yields significant differences for some sources, possibly indicating photometric variability. H-band finding charts for all of our sources are provided to aid follow-up high-resolution imaging.
We present mid IR spectro-photometric imaging of a sample of eight nearby ($D leq 240$pc) Herbig Ae/Be stars. The spectra are dominated by photospheric emission (HR6000), featureless infrared excess emission (T~Cha), broad silicate emission feature ( HR5999) and the infrared emission bands (HD 97048, HD 97300, TY~CrA, HD 176386). The spectrum of HD179218 shows both silicate emission and infrared emission bands (IEB). All stars of our sample where the spectrum is entirely dominated by IEB have an extended emission on scales of a few thousand AU ($sim 10$). We verify the derived source extension found with ISOCAM by multi--aperture photometry with ISOPHT and compare our ISOCAM spectral photometry with ISOSWS spectra.
125 - J.D. Monnier 2005
We report the results of a sensitive K-band survey of Herbig Ae/Be disk sizes using the 85-m baseline Keck Interferometer. Targets were chosen to span the maximum range of stellar properties to probe the disk size dependence on luminosity and effecti ve temperature. For most targets, the measured near-infrared sizes (ranging from 0.2 to 4 AU) support a simple disk model possessing a central optically-thin (dust-free) cavity, ringed by hot dust emitting at the expected sublimation temperatures (T_sub~1000-1500K). Furthermore, we find a tight correlation of disk size with source luminosity R propto L^(1/2) for Ae and late Be systems (valid over more than 2 decades in luminosity), confirming earlier suggestions based on lower-quality data. Interestingly, the inferred dust-free inner cavities of the highest luminosity sources (Herbig B0-B3 stars) are under-sized compared to predictions of the optically-thin cavity model, likely due to optically-thick gas within the inner AU.
We observed molecular hydrogen around a sample of pre-main sequence stars in order to better characterize their gaseous CS environments. We analyzed the FUSE (Far Ultraviolet Spectroscopic Explorer) spectra of a sample of Herbig Ae/Be stars (HAeBes) covering a broad spectral range, including the main-sequence A5 star Beta-Pictoris. To better diagnose the origin of the detected H2 and its excitation conditions, we used a model of a photodissociation region. Our analysis demonstrates that the excitation of H2 is clearly different around most of the HAeBes compared to the interstellar medium. Moreover, the characteristics of H2 around Herbig Ae and Be stars give evidence for different excitation mechanisms. For the most massive stars of our sample (B8 to B2 type), the excitation diagrams are reproduced well by a model of photodissociation regions (PDR). Our results favor an interpretation in terms of large CS envelopes, remnants of the molecular clouds in which the stars were formed. On the other hand, the group of Ae stars (later than B9 type) known to possess disks is more inhomogeneous. In most cases, when CS H2 is detected, the lines of sight do not pass through the disks. The excitation conditions of H2 around Ae stars cannot be reproduced by PDR models and correspond to warm and/or hot excited media very close to the stars. In addition, no clear correlation has been found between the ages of the stars and the amount of circumstellar H2. Our results suggest structural differences between Herbig Ae and Be star environments. Herbig Be stars do evolve faster than Ae stars, and consequently, most Herbig Be stars are younger than Ae ones at the time we observe them. It is thus more likely to find remnants of their parent cloud around them.
126 - V.C. Geers 2007
Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. VLT-VISIR N-band spectra and VLT-ISAAC and VLT- NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 micron PAH features. Spatial-extent profiles of the features and the continuum emission are derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. The 3.3, 8.6, and 11.2 micron PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1E-15 and 5E-17 W/m^2. All 11.2 micron detections from a previous Spitzer survey are confirmed with (tentative) 3.3 micron detections, and both the 8.6 and the 11.2 micron features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34, consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 micron emission is confined to a small radial extent of 12 +- 3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 micron features are consistent with larger (>= 100 carbon atoms) PAHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا