ﻻ يوجد ملخص باللغة العربية
In many scientific problems, researchers try to relate a response variable $Y$ to a set of potential explanatory variables $X = (X_1,dots,X_p)$, and start by trying to identify variables that contribute to this relationship. In statistical terms, this goal can be posed as trying to identify $X_j$s upon which $Y$ is conditionally dependent. Sometimes it is of value to simultaneously test for each $j$, which is more commonly known as variable selection. The conditional randomization test (CRT) and model-X knockoffs are two recently proposed methods that respectively perform conditional independence testing and variable selection by, for each $X_j$, computing any test statistic on the data and assessing that test statistics significance by comparing it to test statistics computed on synthetic variables generated using knowledge of $X$s distribution. Our main contribution is to analyze their power in a high-dimensional linear model where the ratio of the dimension $p$ and the sample size $n$ converge to a positive constant. We give explicit expressions of the asymptotic power of the CRT, variable selection with CRT $p$-values, and model-X knockoffs, each with a test statistic based on either the marginal covariance, the least squares coefficient, or the lasso. One useful application of our analysis is the direct theoretical comparison of the asymptotic powers of variable selection with CRT $p$-values and model-X knockoffs; in the instances with independent covariates that we consider, the CRT provably dominates knockoffs. We also analyze the power gain from using unlabeled data in the CRT when limited knowledge of $X$s distribution is available, and the power of the CRT when samples are collected retrospectively.
Two-sample tests have been one of the most classical topics in statistics with wide application even in cutting edge applications. There are at least two modes of inference used to justify the two-sample tests. One is usual superpopulation inference
In the common nonparametric regression model the problem of testing for a specific parametric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo r
This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of
Let ${bf R}$ be the Pearson correlation matrix of $m$ normal random variables. The Raos score test for the independence hypothesis $H_0 : {bf R} = {bf I}_m$, where ${bf I}_m$ is the identity matrix of dimension $m$, was first considered by Schott (20
The likelihood ratio test is widely used in exploratory factor analysis to assess the model fit and determine the number of latent factors. Despite its popularity and clear statistical rationale, researchers have found that when the dimension of the