ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

170   0   0.0 ( 0 )
 نشر من قبل Byung-Soo Choi
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any $Omega(log n)$-depth quantum adder circuit for two $n$-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen $k$-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer $Omega(log {n})$, but $Omega(sqrt[k]{n})$. This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.



قيم البحث

اقرأ أيضاً

142 - Mingsheng Ying 2021
In this talk, we will describe a framework for assertion-based verification (ABV) of quantum circuits by applying model checking techniques for quantum systems developed in our previous work, in which: (i) Noiseless and noisy quantum circuits are m odelled as operator- and super-operator-valued transition systems, respectively, both of which can be further represented by tensor networks. (ii) Quantum assertions are specified by a temporal extension of Birkhoff-von Neumann quantum logic. Their semantics is defined based on the design decision: they will be used in verification of quantum circuits by simulation on classical computers or human reasoning rather than by quantum physics experiments (e.g. testing through measurements); (iii) Algorithms for reachability analysis and model checking of quantum circuits are developed based on contraction of tensor networks. We observe that many optimisation techniques for computing relational products used in BDD-based model checking algorithms can be generalised for contracting tensor networks of quantum circuits.
Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research efforts have explored a higher level of optimization by making the quantum circuits themselves resilient to noise. We propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing QML and quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search and parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates. Extensively evaluated with 12 QML and VQE benchmarks on 10 quantum comput, QuantumNAS significantly outperforms baselines. For QML, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real QC. It also achieves the lowest eigenvalue for VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD. We also open-source QuantumEngine (https://github.com/mit-han-lab/pytorch-quantum) for fast training of parameterized quantum circuits to facilitate future research.
57 - S. N. Filippov 2019
The conventional photon subtraction and photon addition transformations, $varrho rightarrow t a varrho a^{dag}$ and $varrho rightarrow t a^{dag} varrho a$, are not valid quantum operations for any constant $t>0$ since these transformations are not tr ace nonincreasing. For a fixed density operator $varrho$ there exist fair quantum operations, ${cal N}_{-}$ and ${cal N}_{+}$, whose conditional output states approximate the normalized outputs of former transformations with an arbitrary accuracy. However, the uniform convergence for some classes of density operators $varrho$ has remained essentially unknown. Here we show that, in the case of photon addition operation, the uniform convergence takes place for the energy-second-moment-constrained states such that ${rm tr}[varrho H^2] leq E_2 < infty$, $H = a^{dag}a$. In the case of photon subtraction, the uniform convergence takes place for the energy-second-moment-constrained states with nonvanishing energy, i.e., the states $varrho$ such that ${rm tr}[varrho H] geq E_1 >0$ and ${rm tr}[varrho H^2] leq E_2 < infty$. We prove that these conditions cannot be relaxed and generalize the results to the cases of multiple photon subtraction and addition.
Although interference is a classical-wave phenomenon, the superposition principle, which underlies interference of individual particles, is at the heart of quantum physics. An interaction-free measurements (IFM) harnesses the wave-particle duality of single photons to sense the presence of an object via the modification of the interference pattern, which can be accomplished even if the photon and the object havent interacted with each other. By using the quantum Zeno effect, the efficiency of an IFM can be made arbitrarily close to unity. Here we report an on-chip realization of the IFM based on silicon photonics. We exploit the inherent advantages of the lithographically written waveguides: excellent interferometric phase stability and mode matching, and obtain multipath interference with visibility above 98%. We achieved a normalized IFM efficiency up to 68.2%, which exceeds the 50% limit of the original IFM proposal.
We derive rigorous upper bounds on the distance between quantum states in an open system setting, in terms of the operator norm between the Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا