ﻻ يوجد ملخص باللغة العربية
In this talk, we will describe a framework for assertion-based verification (ABV) of quantum circuits by applying model checking techniques for quantum systems developed in our previous work, in which: (i) Noiseless and noisy quantum circuits are modelled as operator- and super-operator-valued transition systems, respectively, both of which can be further represented by tensor networks. (ii) Quantum assertions are specified by a temporal extension of Birkhoff-von Neumann quantum logic. Their semantics is defined based on the design decision: they will be used in verification of quantum circuits by simulation on classical computers or human reasoning rather than by quantum physics experiments (e.g. testing through measurements); (iii) Algorithms for reachability analysis and model checking of quantum circuits are developed based on contraction of tensor networks. We observe that many optimisation techniques for computing relational products used in BDD-based model checking algorithms can be generalised for contracting tensor networks of quantum circuits.
Despite the rapid development of quantum computing these years, state-of-the-art quantum devices still contain only a very limited number of qubits. One possible way to execute more realistic algorithms in near-term quantum devices is to employ dynam
We study the fundamental design automation problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably. The notion of approximate equivalence of (possibly noisy) quantum cir
Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research efforts have explored
Suppose two quantum circuit chips are located at different places, for which we do not have any prior knowledge, and cannot see the internal structures either. If we want to find out whether they have the same functions or not with certainty, what sh
We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and