ﻻ يوجد ملخص باللغة العربية
The conventional photon subtraction and photon addition transformations, $varrho rightarrow t a varrho a^{dag}$ and $varrho rightarrow t a^{dag} varrho a$, are not valid quantum operations for any constant $t>0$ since these transformations are not trace nonincreasing. For a fixed density operator $varrho$ there exist fair quantum operations, ${cal N}_{-}$ and ${cal N}_{+}$, whose conditional output states approximate the normalized outputs of former transformations with an arbitrary accuracy. However, the uniform convergence for some classes of density operators $varrho$ has remained essentially unknown. Here we show that, in the case of photon addition operation, the uniform convergence takes place for the energy-second-moment-constrained states such that ${rm tr}[varrho H^2] leq E_2 < infty$, $H = a^{dag}a$. In the case of photon subtraction, the uniform convergence takes place for the energy-second-moment-constrained states with nonvanishing energy, i.e., the states $varrho$ such that ${rm tr}[varrho H] geq E_1 >0$ and ${rm tr}[varrho H^2] leq E_2 < infty$. We prove that these conditions cannot be relaxed and generalize the results to the cases of multiple photon subtraction and addition.
A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the uncertainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier can be improved by additionally employing the photon subtrac
It is shown that the addition of down-converted photon pairs to coherent laser light enhances the N-photon phase sensitivity due to the quantum interference between components of the same total photon number. Since most of the photons originate from
The preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system o
We review our most recent results on application of the photon subtraction technique for optical quantum information processing primitives, in particular entanglement distillation and generation of squeezed qubit states. As an introduction we provide
Annihilating and creating a photon in a travelling light field are useful building blocks for quantum-state engineering to generate a photonic state at will. In this paper, we review the relevance of these operations to some of the fundamental aspect