The quasilinear theory of the Wigner-Poisson system in one spatial dimension is examined. Conservation laws and properties of the stationary solutions are determined. Quantum effects are shown to manifest themselves in transient periodic oscillations of the averaged Wigner function in velocity space. The quantum quasilinear theory is checked against numerical simulations of the bump-on-tail and the two-stream instabilities. The predicted wavelength of the oscillations in velocity space agrees well with the numerical results.
Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear deco
rrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to lar
ge velocity-space scales due to anti-phase-mixing modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB f
lows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the anti-phase-mixing effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the critical balance between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).
We explore the multi-faceted important features of turbulence (e.g., anisotropy, dispersion, diffusion) in the three-dimensional (3D) wavenumber domain ($k_parallel$, $k_{perp,1}$, $k_{perp,2}$), by employing the k-filtering technique to the high-qua
lity measurements of fields and particles from the MMS multi-spacecraft constellation. We compute the 3D power spectral densities (PSDs) of magnetic and electric fluctuations (marked as $rm{PSD}(delta mathbf{B}(mathbf{k}))$ and $rm{PSD}(delta mathbf{E}_{langlemathbf{v}_mathrm{i}rangle}(mathbf{k}))$), both of which show a prominent spectral anisotropy in the sub-ion range. We give the first 3D image of the bifurcation between power spectra of the electric and magnetic fluctuations, by calculating the ratio between $rm{PSD}(delta mathbf{E}_{ langlemathbf{v}_mathrm{i}rangle}(mathbf{k}))$ and $rm{PSD}(delta mathbf{B}(mathbf{k}))$, the distribution of which is related to the non-linear dispersion relation. We also compute the ratio between electric spectra in different reference frames defined by the ion bulk velocity, that is $mathrm{PSD}(delta{mathbf{E}_{mathrm{local} mathbf{v}_mathrm{i}}})/mathrm{PSD}(delta{mathbf{E}_{ langlemathbf{v}_mathrm{i}rangle}})$, to visualize the turbulence ion diffusion region (T-IDR) in wavenumber space. The T-IDR has an anisotropy and a preferential direction of wavevectors, which is generally consistent with the plasma wave theory prediction based on the dominance of kinetic Alfven waves (KAW). This work manifests the worth of the k-filtering technique in diagnosing turbulence comprehensively, especially when the electric field is involved.
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the
gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.